6,166 research outputs found

    Cyber security education is as essential as “The Three R’s”

    Get PDF
    Smartphones have diffused rapidly across South African society and constitute the most dominant information and communication technologies in everyday use. That being so, it is important to ensure that all South Africans know how to secure their smart devices. This requires a high level of security awareness and knowledge. As yet, there is no formal curriculum addressing cyber security in South African schools. Indeed, it seems to be left to Universities to teach cyber security principles, and they currently only do this when students take computing-related courses. The outcome of this approach is that only a very small percentage of South Africans, i.e. those who take computing courses at University, are made aware of cyber security risks and know how to take precautions. Moreover, because this group is overwhelmingly male, this educational strategy disproportionately leaves young female South Africans vulnerable to cyber attacks. We thus contend that cyber security ought to be taught as children learn the essential “3 Rs” – delivering requisite skills at University level does not adequately prepare young South Africans for a world where cyber security is an essential skill. Starting to provide awareness and knowledge at primary school, and embedding it across the curriculum would, in addition to ensuring that people have the skills when they need them, also remove the current gender imbalance in cyber security awareness

    Examples of Berezin-Toeplitz Quantization: Finite sets and Unit Interval

    Full text link
    We present a quantization scheme of an arbitrary measure space based on overcomplete families of states and generalizing the Klauder and the Berezin-Toeplitz approaches. This scheme could reveal itself as an efficient tool for quantizing physical systems for which more traditional methods like geometric quantization are uneasy to implement. The procedure is illustrated by (mostly two-dimensional) elementary examples in which the measure space is a NN-element set and the unit interval. Spaces of states for the NN-element set and the unit interval are the 2-dimensional euclidean R2\R^2 and hermitian \C^2 planes

    A new nearby pulsar wind nebula overlapping the RX J0852.0-4622 supernova remnant

    Get PDF
    Energetic pulsars can be embedded in a nebula of relativistic leptons which is powered by the dissipation of the rotational energy of the pulsar. The object PSR J0855-4644 is an energetic and fast-spinning pulsar (Edot = 1.1x10^36 erg/s, P=65 ms) discovered near the South-East rim of the supernova remnant (SNR) RX J0852.0-4622 (aka Vela Jr) by the Parkes multibeam survey. The position of the pulsar is in spatial coincidence with an enhancement in X-rays and TeV gamma-rays, which could be due to its putative pulsar wind nebula (PWN). The purpose of this study is to search for diffuse non-thermal X-ray emission around PSR J0855-4644 to test for the presence of a PWN and to estimate the distance to the pulsar. An X-ray observation was carried out with the XMM-Newton satellite to constrain the properties of the pulsar and its nebula. The absorption column density derived in X-rays from the pulsar and from different regions of the rim of the SNR was compared with the absorption derived from the atomic (HI) and molecular (12CO) gas distribution along the corresponding lines of sight to estimate the distance of the pulsar and of the SNR. The observation has revealed the X-ray counterpart of the pulsar together with surrounding extended emission thus confirming the existence of a PWN. The comparison of column densities provided an upper limit to the distance of the pulsar PSR J0855-4644 and the SNR RX J0852.0-4622 (d<900 pc). Although both objects are at compatible distances, we rule out that the pulsar and the SNR are associated. With this revised distance, PSR J0855-4644 is the second most energetic pulsar, after the Vela pulsar, within a radius of 1 kpc and could therefore contribute to the local cosmic-ray e-/e+ spectrum.Comment: 10 pages, 9 Figures. Accepted for publication in A&

    The First Fermi-LAT SNR Catalog SNR and Cosmic Ray Implications

    Full text link
    Galactic cosmic ray (CRs) sources, classically proposed to be Supernova Remnants (SNRs), must meet the energetic particle content required by direct measurements of high energy CRs. Indirect gamma-ray measurements of SNRs with the Fermi Large Area Telescope (LAT) have now shown directly that at least three SNRs accelerate protons. With the first Fermi LAT SNR Catalog, we have systematically characterized the GeV gamma-rays emitted by 279 SNRs known primarily from radio surveys. We present these sources in a multiwavelength context, including studies of correlations between GeV and radio size, flux, and index, TeV index, and age and environment tracers, in order to better understand effects of evolution and environment on the GeV emission. We show that previously sufficient models of SNRs' GeV emission no longer adequately describe the data. To address the question of CR origins, we also examine the SNRs' maximal CR contribution assuming the GeV emission arises solely from proton interactions. Improved breadth and quality of multiwavelength data, including distances and local densities, and more, higher resolution gamma-ray data with correspondingly improved Galactic diffuse models will strengthen this constraint.Comment: 8 pages, 10 figures; in Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague (The Netherlands

    A 4-degrees-of-freedom microrobot with nanometer resolution

    Get PDF
    A new type of microrobot is described. Its simple and compact design is believed to be of promise in the microrobotics field. Stepping motion allows speeds up to 4mm/s. Resolution smaller than 10 nm is achievable. Experiments in an open-loop motion demonstrated a repeatability better than 50µm on a 10 mm displacement at an average speed of 0.25 mm/s. A position feedback based on a microvision system will be developed in order to achieve a submicron absolute position accurac

    Constraints on cosmic-ray efficiency in the supernova remnant RCW 86 using multi-wavelength observations

    Full text link
    Several young supernova remnants (SNRs) have recently been detected in the high-energy and very-high-energy gamma-ray domains. As exemplified by RX J1713.7-3946, the nature of this emission has been hotly debated, and direct evidence for the efficient acceleration of cosmic-ray protons at the SNR shocks still remains elusive. We analyzed more than 40 months of data acquired by the Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE gamma-rays) information about the broadband nonthermal emission from RCW 86. For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional Counter Array (PCA). Beyond the expected Galactic diffuse background, no significant gamma-ray emission in the direction of RCW 86 is detected in any of the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. In the hadronic scenario, the derived HE upper limits together with the HESS measurements in the VHE domain can only be accommodated by a spectral index Gamma <= 1.8, i.e. a value in-between the standard (test-particle) index and the asymptotic limit of theoretical particle spectra in the case of strongly modified shocks. The interpretation of the gamma-ray emission by inverse Compton scattering of high energy electrons reproduces the multi-wavelength data using a reasonable value for the average magnetic field of 15-25 muG. For these two scenarios, we assessed the level of acceleration efficiency. We discuss these results in the light of existing estimates of the magnetic field strength, the effective density and the acceleration efficiency in RCW 86.Comment: Accepted for publication in A&A; 10 pages and 4 figure
    • …
    corecore