6,166 research outputs found
Cyber security education is as essential as “The Three R’s”
Smartphones have diffused rapidly across South African society and constitute the most dominant information and communication technologies in everyday use. That being so, it is important to ensure that all South Africans know how to secure their smart devices. This requires a high level of security awareness and knowledge. As yet, there is no formal curriculum addressing cyber security in South African schools. Indeed, it seems to be left to Universities to teach cyber security principles, and they currently only do this when students take computing-related courses. The outcome of this approach is that only a very small percentage of South Africans, i.e. those who take computing courses at University, are made aware of cyber security risks and know how to take precautions. Moreover, because this group is overwhelmingly male, this educational strategy disproportionately leaves young female South Africans vulnerable to cyber attacks. We thus contend that cyber security ought to be taught as children learn the essential “3 Rs” – delivering requisite skills at University level does not adequately prepare young South Africans for a world where cyber security is an essential skill. Starting to provide awareness and knowledge at primary school, and embedding it across the curriculum would, in addition to ensuring that people have the skills when they need them, also remove the current gender imbalance in cyber security awareness
Examples of Berezin-Toeplitz Quantization: Finite sets and Unit Interval
We present a quantization scheme of an arbitrary measure space based on
overcomplete families of states and generalizing the Klauder and the
Berezin-Toeplitz approaches. This scheme could reveal itself as an efficient
tool for quantizing physical systems for which more traditional methods like
geometric quantization are uneasy to implement. The procedure is illustrated by
(mostly two-dimensional) elementary examples in which the measure space is a
-element set and the unit interval. Spaces of states for the -element set
and the unit interval are the 2-dimensional euclidean and hermitian
\C^2 planes
A new nearby pulsar wind nebula overlapping the RX J0852.0-4622 supernova remnant
Energetic pulsars can be embedded in a nebula of relativistic leptons which
is powered by the dissipation of the rotational energy of the pulsar. The
object PSR J0855-4644 is an energetic and fast-spinning pulsar (Edot =
1.1x10^36 erg/s, P=65 ms) discovered near the South-East rim of the supernova
remnant (SNR) RX J0852.0-4622 (aka Vela Jr) by the Parkes multibeam survey. The
position of the pulsar is in spatial coincidence with an enhancement in X-rays
and TeV gamma-rays, which could be due to its putative pulsar wind nebula
(PWN).
The purpose of this study is to search for diffuse non-thermal X-ray emission
around PSR J0855-4644 to test for the presence of a PWN and to estimate the
distance to the pulsar. An X-ray observation was carried out with the
XMM-Newton satellite to constrain the properties of the pulsar and its nebula.
The absorption column density derived in X-rays from the pulsar and from
different regions of the rim of the SNR was compared with the absorption
derived from the atomic (HI) and molecular (12CO) gas distribution along the
corresponding lines of sight to estimate the distance of the pulsar and of the
SNR.
The observation has revealed the X-ray counterpart of the pulsar together
with surrounding extended emission thus confirming the existence of a PWN. The
comparison of column densities provided an upper limit to the distance of the
pulsar PSR J0855-4644 and the SNR RX J0852.0-4622 (d<900 pc). Although both
objects are at compatible distances, we rule out that the pulsar and the SNR
are associated. With this revised distance, PSR J0855-4644 is the second most
energetic pulsar, after the Vela pulsar, within a radius of 1 kpc and could
therefore contribute to the local cosmic-ray e-/e+ spectrum.Comment: 10 pages, 9 Figures. Accepted for publication in A&
The First Fermi-LAT SNR Catalog SNR and Cosmic Ray Implications
Galactic cosmic ray (CRs) sources, classically proposed to be Supernova
Remnants (SNRs), must meet the energetic particle content required by direct
measurements of high energy CRs. Indirect gamma-ray measurements of SNRs with
the Fermi Large Area Telescope (LAT) have now shown directly that at least
three SNRs accelerate protons. With the first Fermi LAT SNR Catalog, we have
systematically characterized the GeV gamma-rays emitted by 279 SNRs known
primarily from radio surveys. We present these sources in a multiwavelength
context, including studies of correlations between GeV and radio size, flux,
and index, TeV index, and age and environment tracers, in order to better
understand effects of evolution and environment on the GeV emission. We show
that previously sufficient models of SNRs' GeV emission no longer adequately
describe the data. To address the question of CR origins, we also examine the
SNRs' maximal CR contribution assuming the GeV emission arises solely from
proton interactions. Improved breadth and quality of multiwavelength data,
including distances and local densities, and more, higher resolution gamma-ray
data with correspondingly improved Galactic diffuse models will strengthen this
constraint.Comment: 8 pages, 10 figures; in Proceedings of the 34th International Cosmic
Ray Conference (ICRC 2015), The Hague (The Netherlands
A 4-degrees-of-freedom microrobot with nanometer resolution
A new type of microrobot is described. Its simple and compact design is believed to be of promise in the microrobotics field. Stepping motion allows speeds up to 4mm/s. Resolution smaller than 10 nm is achievable. Experiments in an open-loop motion demonstrated a repeatability better than 50µm on a 10 mm displacement at an average speed of 0.25 mm/s. A position feedback based on a microvision system will be developed in order to achieve a submicron absolute position accurac
Constraints on cosmic-ray efficiency in the supernova remnant RCW 86 using multi-wavelength observations
Several young supernova remnants (SNRs) have recently been detected in the
high-energy and very-high-energy gamma-ray domains. As exemplified by RX
J1713.7-3946, the nature of this emission has been hotly debated, and direct
evidence for the efficient acceleration of cosmic-ray protons at the SNR shocks
still remains elusive. We analyzed more than 40 months of data acquired by the
Large Area Telescope (LAT) on-board the Fermi Gamma-Ray Space Telescope in the
HE domain, and gathered all of the relevant multi-wavelength (from radio to VHE
gamma-rays) information about the broadband nonthermal emission from RCW 86.
For this purpose, we re-analyzed the archival X-ray data from the ASCA/Gas
Imaging Spectrometer (GIS), the XMM-Newton/EPIC-MOS, and the RXTE/Proportional
Counter Array (PCA). Beyond the expected Galactic diffuse background, no
significant gamma-ray emission in the direction of RCW 86 is detected in any of
the 0.1-1, 1-10 and 10-100 GeV Fermi-LAT maps. In the hadronic scenario, the
derived HE upper limits together with the HESS measurements in the VHE domain
can only be accommodated by a spectral index Gamma <= 1.8, i.e. a value
in-between the standard (test-particle) index and the asymptotic limit of
theoretical particle spectra in the case of strongly modified shocks. The
interpretation of the gamma-ray emission by inverse Compton scattering of high
energy electrons reproduces the multi-wavelength data using a reasonable value
for the average magnetic field of 15-25 muG. For these two scenarios, we
assessed the level of acceleration efficiency. We discuss these results in the
light of existing estimates of the magnetic field strength, the effective
density and the acceleration efficiency in RCW 86.Comment: Accepted for publication in A&A; 10 pages and 4 figure
- …