Galactic cosmic ray (CRs) sources, classically proposed to be Supernova
Remnants (SNRs), must meet the energetic particle content required by direct
measurements of high energy CRs. Indirect gamma-ray measurements of SNRs with
the Fermi Large Area Telescope (LAT) have now shown directly that at least
three SNRs accelerate protons. With the first Fermi LAT SNR Catalog, we have
systematically characterized the GeV gamma-rays emitted by 279 SNRs known
primarily from radio surveys. We present these sources in a multiwavelength
context, including studies of correlations between GeV and radio size, flux,
and index, TeV index, and age and environment tracers, in order to better
understand effects of evolution and environment on the GeV emission. We show
that previously sufficient models of SNRs' GeV emission no longer adequately
describe the data. To address the question of CR origins, we also examine the
SNRs' maximal CR contribution assuming the GeV emission arises solely from
proton interactions. Improved breadth and quality of multiwavelength data,
including distances and local densities, and more, higher resolution gamma-ray
data with correspondingly improved Galactic diffuse models will strengthen this
constraint.Comment: 8 pages, 10 figures; in Proceedings of the 34th International Cosmic
Ray Conference (ICRC 2015), The Hague (The Netherlands