242 research outputs found

    High-Dose Therapy and Autologous Hematopoietic Cell Transplantation in Peripheral T Cell Lymphoma (PTCL): Analysis of Prognostic Factors

    Get PDF
    Patients with peripheral T cell lymphoma (PTCL) have a poor prognosis with current treatment approaches. We examined the outcomes of high-dose therapy (HDT) and autologous hematopoietic cell transplant (AHCT) on the treatment of PTCL and the impact of patient/disease features on long-term outcome. Sixty-seven patients with PTCL–not otherwise specified (n = 30), anaplastic large cell lymphoma (n = 30), and angioimmunoblastic T cell lymphoma (n = 7) underwent HDT/AHCT at the City of Hope. The median age was 48 years (range: 5-78). Twelve were transplanted in first complete remission (1CR)/partial remission (PR) and 55 with relapsed or induction failure disease (RL/IF). With a median follow-up for surviving patients of 65.8 months (range: 24.5-216.0) the 5-year overall survival (OS) and progression-free survival (PFS) were 54% and 40%, respectively. The 5-year PFS was 75% for 1CR/PR compared to 32% for RL/IF patients (P = .01). When the Prognostic Index for PTCL unspecified (PIT) was applied at the time of transplant, patients in the PIT 3-4 group had 5-year PFS of only 8%. These results show that HDT/AHCT can improve long-term disease control in relapsed/refractory PTCL and that HDT/AHCT should ideally be applied either during 1CR/PR, or as part of upfront treatment. More effective and novel therapies are needed for patients with high-risk disease (PIT 3-4 factors) and allogeneic HCT should be explored in these patients

    Comprehensive characterization of molecular interactions based on nanomechanics

    Get PDF
    Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions

    Working towards an engagement turn to agricultural research in the Tonle Sap Biosphere,Cambodia

    Get PDF
    A new generation of agricultural research programs are embracing use of participation as a vehicle for achieving greater impact and supporting transformative change in complex social-ecological systems. In this paper, we share learning from use of participatory action research in the Tonle Sap biosphere in Cambodia, as the main implementing methodology within a large multi-partner agricultural research program. We describe the program’s espoused approach to applying participatory methodologies focusing on co-ownership, equity and reflexivity with stakeholders throughout the research process. We then reflect upon our practice as we pursued initiatives to support increased income and nutrition outcomes for the poorest people in a diverse aquatic agricultural system characterized by inequality. We discuss the challenges and early successes of the process and share three enabling conditions that support a shift towards quality of participation in agricultural research: (1) focusing at the outset on a strengthsbased mind-set, (2) staging a critical stance to progressively build equity in process and outcomes, and (3) institutionalizing reflexivity to facilitate ongoing learning

    Advances in gene therapy for muscular dystrophies

    Get PDF
    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments

    Therapeutic monoclonal antibodies for Ebola virus infection derived from vaccinated humans

    Get PDF
    We describe therapeutic monoclonal antibodies isolated from human volunteers vaccinated with recombinant adenovirus expressing Ebola virus glycoprotein (EBOV GP) and boosted with modified vaccinia virus Ankara. Among 82 antibodies isolated from peripheral blood B cells, almost half neutralized GP pseudotyped influenza virus. The antibody response was diverse in gene usage and epitope recognition. Although close to germline in sequence, neutralizing antibodies with binding affinities in the nano- to pico-molar range, similar to “affinity matured” antibodies from convalescent donors, were found. They recognized the mucin-like domain, glycan cap, receptor binding region, and the base of the glycoprotein. A cross-reactive cocktail of four antibodies, targeting the latter three non-overlapping epitopes, given on day 3 of EBOV infection, completely protected guinea pigs. This study highlights the value of experimental vaccine trials as a rich source of therapeutic human monoclonal antibodies

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    In Silico Screening Based on Predictive Algorithms as a Design Tool for Exon Skipping Oligonucleotides in Duchenne Muscular Dystrophy

    Get PDF
    The use of antisense 'splice-switching' oligonucleotides to induce exon skipping represents a potential therapeutic approach to various human genetic diseases. It has achieved greatest maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy (DMD), for which several clinical trials are completed or ongoing, and a large body of data exists describing tested oligonucleotides and their efficacy. The rational design of an exon skipping oligonucleotide involves the choice of an antisense sequence, usually between 15 and 32 nucleotides, targeting the exon that is to be skipped. Although parameters describing the target site can be computationally estimated and several have been identified to correlate with efficacy, methods to predict efficacy are limited. Here, an in silico pre-screening approach is proposed, based on predictive statistical modelling. Previous DMD data were compiled together and, for each oligonucleotide, some 60 descriptors were considered. Statistical modelling approaches were applied to derive algorithms that predict exon skipping for a given target site. We confirmed (1) the binding energetics of the oligonucleotide to the RNA, and (2) the distance in bases of the target site from the splice acceptor site, as the two most predictive parameters, and we included these and several other parameters (while discounting many) into an in silico screening process, based on their capacity to predict high or low efficacy in either phosphorodiamidate morpholino oligomers (89% correctly predicted) and/or 2'O Methyl RNA oligonucleotides (76% correctly predicted). Predictions correlated strongly with in vitro testing for sixteen de novo PMO sequences targeting various positions on DMD exons 44 (R² 0.89) and 53 (R² 0.89), one of which represents a potential novel candidate for clinical trials. We provide these algorithms together with a computational tool that facilitates screening to predict exon skipping efficacy at each position of a target exon

    Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles

    Get PDF
    We report on the observation of the size effect of thermal magnetization in Au nanoparticles. The thermal deviation of the saturation magnetization departs substantially from that predicted by the Bloch T3/2-law, indicating the existence of magnetic anisotropic energy. The results may be understood using the uniaxial anisotropy Heisenberg model, in which the surface atoms give rise to polarized moments while the magnetic anisotropic energy decreases as the size of the Au nanoparticles is reduced. There is a significant maximum magnetic anisotropic energy found for the 6 nm Au nanoparticles, which is associated with the deviation of the lattice constant due to magnetocrystalline anisotropy

    Silica-Encapsulated Efficient and Stable Si Quantum Dots with High Biocompatibility

    Get PDF
    A facile fabrication method to produce biocompatible semiconductor Quantum Dots encapsulated in high quality and thick thermal oxide is presented. The process employs sonication of porous Si/SiO2 structures to produce flakes with dimension in the 50–200 nm range. These flakes show a coral-like SiO2 skeleton with Si nanocrystals embedded in and are suitable for functionalization with other diagnostic or therapeutic agents. Silicon is a biocompatible material, efficiently cleared from the human body. The Photoluminescence emission falls in the transparency window for living tissues and is found to be bright and stable for hours in the aggressive biological environment
    corecore