54 research outputs found

    Emergence of competing magnetic interactions induced by Ge doping in the semiconductor FeGa3

    Get PDF
    ABSTRACT: FeGa3 is an unusual intermetallic semiconductor that presents intriguing magnetic responses to the tuning of its electronic properties. When doped with Ge, the system evolves from diamagnetic to paramagnetic to ferromagnetic ground states that are not well understood. In thiswork,we have performed a joint theoretical and experimental study of FeGa3−xGex using density functional theory and magnetic susceptibility measurements. For low Ge concentrations we observe the formation of localized moments on some Fe atoms and, as the dopant concentration increases, a more delocalized magnetic behavior emerges. The magnetic configuration strongly depends on the dopant distribution, leading even to the appearance of antiferromagnetic interactions in certain configurations

    Pressure-induced metal-insulator transition and absence of magnetic order in FeGa3 from a first-principles study

    Get PDF
    ABSTRACT: The intermetallic compound FeGa3 is a narrow-gap semiconductor with a measured gap between 0.2 and 0.6 eV. The presence of iron d states on the top of the valence band and on the bottom of the conduction band, together with its moderate electronic correlation (U/W ∼ 0.6), have led to the question of whether there is magnetic order in this compound. We have examined the possible presence of magnetism in FeGa3 as well as its electronic structure at high pressures, using the density functional theory (DFT) + U method with the intermediated double-counting scheme. We have found that for an optimized value of the Yukawa screening length λ, there is no magnetic moment on the iron ions (μ = 0), implying that FeGa3 is nonmagnetic. We have also found that around a pressure of 25 GPa a metal-insulator transition takes place

    Multiband electronic characterization of the complex intermetallic cage system Y1−xGdxCo2Zn20

    Get PDF
    ABSTRACT: FeGa3 is an unusual intermetallic semiconductor that presents intriguing magnetic responses to the tuning of its electronic properties. When doped with Ge, the system evolves from diamagnetic to paramagnetic to ferromagnetic ground states that are not well understood. In this work, we have performed a joint theoretical and experimental study of FeGa3−xGex using density functional theory and magnetic susceptibility measurements. For low Ge concentrations we observe the formation of localized moments on some Fe atoms and, as the dopant concentration increases, a more delocalized magnetic behavior emerges. The magnetic configuration strongly depends on the dopant distribution, leading even to the appearance of antiferromagnetic interactions in certain configurations

    Electronic and optical properties of lead iodide

    Get PDF
    ABSTRACT: Lead iodide (PbI2) is a very important material with a technological applicability as a room-temperature radiation detector. It is a wide-band-gap semiconductor (Eg.2 eV) with high environmental stability efficiency. The performance of the detector cannot be fully understood unless its electronic and optical properties are determined. Recently, its band-gap energy and thermal properties were determined by photoacoustic spectroscopy. A single crystal of PbI2 was grown by the Bridgman method with the c-axis oriented perpendicular to the growth axis. The purpose of this work is to obtain the electronic structure of PbI2, its dielectric functions e 1 and e 2 by ellipsometry and theoretically by full-potential linear muffin-tinorbital ~FPLMTO! method, and the temperature dependence of the measured band-gap energy by optica absorption. The obtained Eg(T) can be fitted by two different methods, leading to Eg ~0 K! and Eg ~300 K!

    Tuning of Electrical and Optical Properties of Highly Conducting and Transparent Ta-Doped TiO2 Polycrystalline Films

    Get PDF
    We present a detailed study on polycrystalline transparent conducting Ta-doped TiO2 films, obtained by room temperature pulsed laser deposition followed by an annealing treatment at 550°C in vacuum. The effect of Ta as a dopant element and of different synthesis conditions are explored in order to assess the relationship between material structure and functional properties, i.e. electrical conductivity and optical transparency. We show that for the doped samples it is possible to achieve low resistivity (of the order of 5×10-4 Ωcm) coupled with transmittance values exceeding 80% in the visible range, showing the potential of polycrystalline Ta:TiO2 for application as a transparent electrode in novel photovoltaic devices. The presence of trends in the structural (crystalline domain size, anatase cell parameters), electrical (resistivity, charge carrier density and mobility) and optical (transmittance, optical band gap, effective mass) properties as a function of the oxygen background pressures and laser fluence used during the deposition process and of the annealing atmosphere is discussed, and points towards a complex defect chemistry ruling the material behavior. The large mobility values obtained in this work for Ta:TiO2 polycrystalline films (up to 13 cm2V-1s-1) could represent a definitive advantage with respect to the more studied Nb-doped TiO2

    The CARMENES search for exoplanets around M dwarfs

    Get PDF
    Context. The CARMENES instrument, installed at the 3.5 m telescope of the Calar Alto Observatory in Almería, Spain, was conceived to deliver high-accuracy radial velocity (RV) measurements with long-term stability to search for temperate rocky planets around a sample of nearby cool stars. Moreover, the broad wavelength coverage was designed to provide a range of stellar activity indicators to assess the nature of potential RV signals and to provide valuable spectral information to help characterise the stellar targets. Aims: We describe the CARMENES guaranteed time observations (GTO), spanning from 2016 to 2020, during which 19 633 spectra for a sample of 362 targets were collected. We present the CARMENES Data Release 1 (DR1), which makes public all observations obtained during the GTO of the CARMENES survey. Methods: The CARMENES survey target selection was aimed at minimising biases, and about 70% of all known M dwarfs within 10 pc and accessible from Calar Alto were included. The data were pipeline-processed, and high-level data products, including 18 642 precise RVs for 345 targets, were derived. Time series data of spectroscopic activity indicators were also obtained. Results: We discuss the characteristics of the CARMENES data, the statistical properties of the stellar sample, and the spectroscopic measurements. We show examples of the use of CARMENES data and provide a contextual view of the exoplanet population revealed by the survey, including 33 new planets, 17 re-analysed planets, and 26 confirmed planets from transiting candidate follow-up. A subsample of 238 targets was used to derive updated planet occurrence rates, yielding an overall average of 1.44 ± 0.20 planets with 1 M⊕ < Mpl sin i < 1000 M⊕ and 1 day < Porb < 1000 days per star, and indicating that nearly every M dwarf hosts at least one planet. All the DR1 raw data, pipeline-processed data, and high-level data products are publicly available online. Conclusions: CARMENES data have proven very useful for identifying and measuring planetary companions. They are also suitable for a variety of additional applications, such as the determination of stellar fundamental and atmospheric properties, the characterisation of stellar activity, and the study of exoplanet atmospheres

    The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden’s Star

    Get PDF
    Context.Teegarden’s Star is the brightest and one of the nearest ultra-cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0 V),the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES.Aims.As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegarden’sStar and analysed them for planetary signals.Methods.We find periodic variability in the radial velocities of Teegarden’s Star. We also studied photometric measurements to rule out stellarbrightness variations mimicking planetary signals.Results.We find evidence for two planet candidates, each with 1.1M⊕minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. Noevidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotationand old age.Conclusions.The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cooldwarf for which the masses have been determined using radial velocities.We thank the referee Rodrigo Díaz for a careful review andhelpful comments. M.Z. acknowledges support from the Deutsche Forschungs-gemeinschaft under DFG RE 1664/12-1 and Research Unit FOR2544 “BluePlanets around Red Stars”, project no. RE 1664/14-1. CARMENES isan instrument for the Centro Astronómico Hispano-Alemán de Calar Alto(CAHA, Almería, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de InvestigacionesCientíficas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut für Astronomie, Instituto de Astrofísica de Andalucía, LandessternwarteKönigstuhl, Institut de Ciències de l’Espai, Institut für Astrophysik Göttingen,Universidad Complutense de Madrid, Thüringer Landessternwarte Tautenburg,Instituto de Astrofísica de Canarias, Hamburger Sternwarte, Centro de Astro-biología and Centro Astronómico Hispano-Alemán), with additional contribu-tions by the Spanish Ministry of Economy, the German Science Foundationthrough the Major Research Instrumentation Programme and DFG ResearchUnit FOR2544 “Blue Planets around Red Stars”, the Klaus Tschira Stiftung, thestates of Baden-Württemberg and Niedersachsen, and by the Junta de Andalucía.Based on data from the CARMENES data archive at CAB (INTA-CSIC). Thisarticle is based on observations made with the MuSCAT2 instrument, devel-oped by ABC, at Telescopio Carlos Sánchez operated on the island of Tener-ife by the IAC in the Spanish Observatorio del Teide. Data were partly col-lected with the 150-cm and 90-cm telescopes at the Sierra Nevada Observa-tory (SNO) operated by the Instituto de Astrofísica de Andalucía (IAA-CSIC).Data were partly obtained with the MONET/South telescope of the MOnitoringNEtwork of Telescopes, funded by the Alfried Krupp von Bohlen und HalbachFoundation, Essen, and operated by the Georg-August-Universität Göttingen,the McDonald Observatory of the University of Texas at Austin, and the SouthAfrican Astronomical Observatory. We acknowledge financial support from theSpanish Agencia Estatal de Investigación of the Ministerio de Ciencia, Inno-vación y Universidades and the European FEDER/ERF funds through projectsAYA2015-69350-C3-2-P, AYA2016-79425-C3-1/2/3-P, AYA2018-84089, BES-2017-080769, BES-2017-082610, ESP2015-65712-C5-5-R, ESP2016-80435-C2-1/2-R, ESP2017-87143-R, ESP2017-87676-2-2, ESP2017-87676-C5-1/2/5-R, FPU15/01476, RYC-2012-09913, the Centre of Excellence ”Severo Ochoa”and ”María de Maeztu” awards to the Instituto de Astrofísica de Canarias (SEV-2015-0548), Instituto de Astrofísica de Andalucía (SEV-2017-0709), and Cen-tro de Astrobiología (MDM-2017-0737), the Generalitat de Catalunya throughCERCA programme”, the Deutsches Zentrum für Luft- und Raumfahrt throughgrants 50OW0204 and 50OO1501, the European Research Council through grant694513, the Italian Ministero dell’instruzione, dell’università de della ricerca andUniversità degli Studi di Roma Tor Vergata through FFABR 2017 and “Mis-sion: Sustainability 2016”, the UK Science and Technology Facilities Council through grant ST/P000592/1, the Israel Science Foundation through grant848/16, the Chilean CONICYT-FONDECYT through grant 3180405, the Mexi-can CONACYT through grant CVU 448248, the JSPS KAKENHI through grantsJP18H01265 and 18H05439, and the JST PRESTO through grant JPMJPR1775

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Rapid contraction of giant planets orbiting the 20-million-year-old star V1298 Tau

    Full text link
    peer reviewedCurrent theories of planetary evolution predict that infant giant planets have large radii and very low densities before they slowly contract to reach their final size after about several hundred million years1,2. These theoretical expectations remain untested so far as the detection and characterization of very young planets is extremely challenging due to the intense stellar activity of their host stars3,4. Only the recent discoveries of young planetary transiting systems allow initial constraints to be placed on evolutionary models5–7. With an estimated age of 20 million years, V1298 Tau is one of the youngest solar-type stars known to host transiting planets; it harbours a system composed of four planets, two Neptune-sized, one Saturn-sized and one Jupiter-sized8,9. Here we report a multi-instrument radial velocity campaign of V1298 Tau, which allowed us to determine the masses of two of the planets in the system. We find that the two outermost giant planets, V1298 Tau b and e (0.64 ± 0.19 and 1.16 ± 0.30 Jupiter masses, respectively), seem to contradict our knowledge of early-stages planetary evolution. According to models, they should reach their mass–radius combination only hundreds of millions of years after formation. This result suggests that giant planets can contract much more quickly than usually assumed. © 2021, The Author(s), under exclusive licence to Springer Nature Limited
    corecore