296 research outputs found

    A call for standardized outcomes in microTESE

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136713/1/andr12356.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136713/2/andr12356_am.pd

    Deep learning predicts function of live retinal pigment epithelium from quantitative microscopy.

    Get PDF
    Increases in the number of cell therapies in the preclinical and clinical phases have prompted the need for reliable and non-invasive assays to validate transplant function in clinical biomanufacturing. We developed a robust characterization methodology composed of quantitative bright-field absorbance microscopy (QBAM) and deep neural networks (DNNs) to non-invasively predict tissue function and cellular donor identity. The methodology was validated using clinical-grade induced pluripotent stem cell derived retinal pigment epithelial cells (iPSC-RPE). QBAM images of iPSC-RPE were used to train DNNs that predicted iPSC-RPE monolayer transepithelial resistance, predicted polarized vascular endothelial growth factor (VEGF) secretion, and matched iPSC-RPE monolayers to the stem cell donors. DNN predictions were supplemented with traditional machine learning algorithms that identified shape and texture features of single cells that were used to predict tissue function and iPSC donor identity. These results demonstrate non-invasive cell therapy characterization can be achieved with QBAM and machine learning

    Glycaemic control and risk of incident urinary incontinence in women with Type 1 diabetes: results from the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study

    Full text link
    AimsTo study the impact of glycaemic control on urinary incontinence in women who participated in the Diabetes Control and Complications Trial (DCCT; 1983–1993) and its observational follow‐up study, the Epidemiology of Diabetes Interventions and Complications (EDIC; 1994–present).MethodsStudy participants were women who completed, at both years 10 (2003) and 17 (2010) of the EDIC follow‐up, the urological assessment questionnaire (UroEDIC). Urinary incontinence was defined as self‐reported involuntary leakage of urine that occurred at least weekly. Incident urinary incontinence was defined as weekly urinary incontinence present at EDIC year 17 but not at EDIC year 10. Multivariable regression models were used to examine the association of incident urinary incontinence with comorbid prevalent conditions and glycaemic control (mean HbA1c over the first 10 years of EDIC).ResultsA total of 64 (15.3%) women with Type 1 diabetes (mean age 43.6 ± 6.3 years at EDIC year 10) reported incident urinary incontinence at EDIC year 17. When adjusted for clinical covariates (including age, DCCT cohort assignment, DCCT treatment arm, BMI, insulin dosage, parity, hysterectomy, autonomic neuropathy and urinary tract infection in the last year), the mean EDIC HbA1c was associated with increased odds of incident urinary incontinence (odds ratio 1.03, 95% CI 1.01–1.06 per mmol/mol increase; odds ratio 1.41, 95% CI 1.07–1.89 per % HbA1c increase).ConclusionsIncident urinary incontinence was associated with higher HbA1c levels in women with Type 1 diabetes, independent of other recognized risk factors. These results suggest the potential for women to modify their risk of urinary incontinence with improved glycaemic control. (Clinical Trials Registry no: NCT00360815 and NCT00360893).What’s new?Research to date has failed to show an association between glycaemic control and urinary incontinence (UI) in women with diabetes.We examined the relationship between HbA1c and UI using longitudinal data from the Diabetes Control and Complications Trial (DCCT) and its observational follow‐up, the Epidemiology of Diabetes Interventions and Complications (EDIC) study.Our findings show that the odds of UI increase with poor glycaemic control in women with Type 1 diabetes, independently of other well‐described predictors of UI.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134490/1/dme13126.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134490/2/dme13126_am.pd

    New insights into the manual activities of individuals from the Phaleron cemetery (Archaic Athens, Greece)

    Get PDF
    Until the early 5th century BC, Phaleron Bay was the main port of ancient Athens (Greece). On its shore, archaeologists have discovered one of the largest known cemeteries in ancient Greece, including a range of burial forms, simple pits, cremations, larnaces (clay tubs), and series of burials of male individuals who appear to have died violent deaths, referred to here as “atypical burials”. Reconstructing the osteobiographies of these individuals will help create a deeper understanding of the socio-political conditions preceding the rise of Classical Athens. Here, we assess the habitual manual behavior of the people of Archaic Phaleron (ca. 7th – 6th cent. BC), relying on a new and precise three-dimensional method for reconstructing physical activity based on hand muscle attachment sites. This approach has been recently validated on laboratory animal samples as well as on recent human skeletons with a detailed level of long-term occupational documentation (i.e., the mid-19th century Basel Spitalfriedhof sample). Our Phaleron sample consists of 48 adequately preserved hand skeletons, of which 14 correspond to atypical burials. Our results identified consistent differences in habitual manual behaviors between atypical burials and the rest. The former present a distinctive power-grasping tendency in most skeletons, which was significantly less represented in the latter (p-values of <0.01 and 0.03). Based on a comparison with the uniquely documented Basel sample (45 individuals), this entheseal pattern of the atypical burials was exclusively found in long-term heavy manual laborers. These findings reveal an important activity difference between burials typical for the Phaleron cemetery and atypical burials, suggesting that the latter were likely involved in distinctive, strenuous manual activities. The results of this pilot study comprise an important first step towards reconstructing the identity of these human skeletal remains. Future research can further elucidate the occupational profiles of these individuals through the discovery of additional well-preserved hand skeletons and by extending our analyses to other anatomical regions

    Methodology for Y Chromosome Capture: A complete genome sequence of Y chromosome using flow cytometry, laser microdissection and magnetic streptavidin-beads

    Get PDF
    This study is a comparison of the efficiency of three technologies used for Y chromosome capture and the next-generation sequencing (NGS) technologies applied for determining its whole sequence. Our main findings disclose that streptavidin–biotin magnetic particle-based capture methodology offers better and a deeper sequence coverage for Y chromosome capture, compared to chromosome sorting and microdissection procedures. Moreover, this methodology is less time consuming and the most selective for capturing only Y chromosomal material, in contrast with other methodologies that result in considerable background material from other, non-targeted chromosomes. NGS results compared between two platforms, NextSeq 500 and SOLID 5500xl, produce the same coverage results. This is the first study to explore a methodological comparison of Y chromosome capture and genetic analysis. Our results indicate an improved strategy for Y chromosome research with applications in several scientific fields where this chromosome plays an important role, such as forensics, medical sciences, molecular anthropology and cancer sciences.Spanish Alfonso Martin Escudero Foundation for the financial support to one of the authors of the present work (MJ Alvarez –Cubero)

    Downregulation of microRNA-383 is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation by targeting IRF1

    Get PDF
    Our previous studies have shown that microRNA-383 (miR-383) expression is downregulated in the testes of infertile men with maturation arrest (MA). However, the underlying mechanisms of miR-383 involved in the pathogenesis of MA remain unknown. In this study, we showed that downregulation of miR-383 was associated with hyperactive proliferation of germ cells in patients with mixed patterns of MA. Overexpression of miR-383 in NT2 (testicular embryonal carcinoma) cells resulted in suppression of proliferation, G1-phase arrest and induction of apoptosis, whereas silencing of miR-383 reversed these effects. The effects of miR-383 were mediated through targeting a tumor suppressor, interferon regulatory factor-1 (IRF1), and miR-383 was negatively correlated with IRF1 protein expression in vivo. miR-383 inhibited IRF1 by affecting its mRNA stability, which subsequently reduced the levels of the targets of IRF1, namely cyclin D1, CDK2 and p21. Downregulation of IRF1 or cyclin D1, but not that of CDK2, enhanced miR-383-mediated effects, whereas silencing of p21 partially inhibited the effects of miR-383. Moreover, miR-383 downregulated CDK4 by increasing proteasome-dependent degradation of CDK4, which in turn resulted in an inhibition of phosphorylated retinoblastoma protein (pRb) phosphorylation. These results suggest that miR-383 functions as a negative regulator of proliferation by targeting IRF1, in part, through inactivation of the pRb pathway. Abnormal testicular miR-383 expression may potentiate the connections between male infertility and testicular germ cell tumor

    A de novo paradigm for male infertility

    Get PDF
    Funding Information: (DFG, CRU326) to C.F. and F.T. This project was also supported in part by funding from the Australian National Health and Medical Research Council (APP1120356) to M.K.O.B., by grants from the National Institutes of Health of the United States of America (R01HD078641 to D.F.C. and K.I.A., P50HD096723 to D.F.C.) and from the Biotechnology and Biological Sciences Research Council (BB/S008039/1) to D.J.E. Funding Information: We are grateful for the participation of all patients and their parents in this study. We thank Laurens van de Wiel (Radboudumc), Sebastian Judd-Mole (Monash University), Arron Scott and Bryan Hepworth (Newcastle University) for technical support, and Margot J Wyrwoll (University of Münster) for help with handling MERGE samples and data. This project was funded by The Netherlands Organization for Scientific Research (918-15-667) to J.A.V. as well as an Investigator Award in Science from the Wellcome Trust (209451) to J.A.V. a grant from the Catherine van Tussenbroek Foundation to M.S.O. a grant from MERCK to R.S. a UUKi Rutherford Fund Fellowship awarded to B.J.H. and the German Research Foundation Clinical Research Unit “Male Germ Cells” Publisher Copyright: © 2022, The Author(s).De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10−5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10−4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.publishersversionpublishe

    The Dynamic Transcriptional Cell Atlas of Testis Development during Human Puberty

    Get PDF
    The human testis undergoes dramatic developmental and structural changes during puberty, including proliferation and maturation of somatic niche cells, and the onset of spermatogenesis. To characterize this understudied process, we profiled and analyzed single-cell transcriptomes of similar to 10,000 testicular cells from four boys spanning puberty and compared them to those of infants and adults. During puberty, undifferentiated spermatogonia sequentially expand and differentiate prior to the initiation of gametogenesis. Notably, we identify a common pre-pubertal progenitor for Leydig and myoid cells and delineate candidate factors controlling pubertal differentiation. Furthermore, pre-pubertal Sertoli cells exhibit two distinct transcriptional states differing in metabolic profiles before converging to an alternative single mature population during puberty. Roles for testosterone in Sertoli cell maturation, antimicrobial peptide secretion, and spermatogonial differentiation are further highlighted through single-cell analysis of testosterone-suppressed transfemale testes. Taken together, our transcriptional atlas of the developing human testis provides multiple insights into developmental changes and key factors accompanying male puberty
    corecore