21,616 research outputs found

    Empirical orbit determination using Apollo 14 data

    Get PDF
    An empirical orbit determination method is shown to yield highly accurate navigation results when applied to lunar orbit tracking data. Regressions and predictions of free flight Apollo 14 tracking data exhibit minimal residual growth, and the solution orbital elements behave in a very consistent manner. Solutions from data acquired during propulsive maneuvers result in degraded predictions. The residual patterns from free flight processing are shown to be consistent from pass to pass and are correlated with lunar topographic features

    High-order myopic coronagraphic phase diversity (COFFEE) for wave-front control in high-contrast imaging systems

    Full text link
    The estimation and compensation of quasi-static aberrations is mandatory to reach the ultimate performance of high-contrast imaging systems. COFFEE is a focal plane wave-front sensing method that consists in the extension of phase diversity to high-contrast imaging systems. Based on a Bayesian approach, it estimates the quasi-static aberrations from two focal plane images recorded from the scientific camera itself. In this paper, we present COFFEE's extension which allows an estimation of low and high order aberrations with nanometric precision for any coronagraphic device. The performance is evaluated by realistic simulations, performed in the SPHERE instrument framework. We develop a myopic estimation that allows us to take into account an imperfect knowledge on the used diversity phase. Lastly, we evaluate COFFEE's performance in a compensation process, to optimize the contrast on the detector, and show it allows one to reach the 10^-6 contrast required by SPHERE at a few resolution elements from the star. Notably, we present a non-linear energy minimization method which can be used to reach very high contrast levels (better than 10^-7 in a SPHERE-like context)Comment: Accepted in Optics Expres

    Large N and double scaling limits in two dimensions

    Get PDF
    Recently, the author has constructed a series of four dimensional non-critical string theories with eight supercharges, dual to theories of light electric and magnetic charges, for which exact formulas for the central charge of the space-time supersymmetry algebra as a function of the world-sheet couplings were obtained. The basic idea was to generalize the old matrix model approach, replacing the simple matrix integrals by the four dimensional matrix path integrals of N=2 supersymmetric Yang-Mills theory, and the Kazakov critical points by the Argyres-Douglas critical points. In the present paper, we study qualitatively similar toy path integrals corresponding to the two dimensional N=2 supersymmetric non-linear sigma model with target space CP^n and twisted mass terms. This theory has some very strong similarities with N=2 super Yang-Mills, including the presence of critical points in the vicinity of which the large n expansion is IR divergent. The model being exactly solvable at large n, we can study non-BPS observables and give full proofs that double scaling limits exist and correspond to universal continuum limits. A complete characterization of the double scaled theories is given. We find evidence for dimensional transmutation of the string coupling in some non-critical string theories. We also identify en passant some non-BPS particles that become massless at the singularities in addition to the usual BPS states.Comment: 38 pages, including an introductory section that makes the paper self-contained, two figures and one appendix; v2: typos correcte

    Electron Transport and Hot Phonons in Carbon Nanotubes

    Full text link
    We demonstrate the key role of phonon occupation in limiting the high-field ballistic transport in metallic carbon nanotubes. In particular, we provide a simple analytic formula for the electron transport scattering length, that we validate by accurate first principles calculations on (6,6) and (11,11) nanotubes. The comparison of our results with the scattering lengths fitted from experimental I-V curves indicates the presence of a non-equilibrium optical phonon heating induced by electron transport. We predict an effective temperature for optical phonons of thousands Kelvin.Comment: 4 pages, 1 figur
    • 

    corecore