1,936 research outputs found

    Importance of Pumice Prophylaxis for Orthodontic Bonding with Self-etch Primer: An in vivo Study

    Get PDF
    Self-etching primers (SEP) have recently simplified the orthodontic bonding process and questions have arisen regarding their reliability and efficiency. The goal of this study was to assess the importance of a pumice prophylaxis prior to bonding with SEP (Transbond Plus, 3M Unitek, Monrovia, CA) in reducing bond failures. Thirty orthodontic patients volunteered to participate in this split-mouth prospective clinical trial. A pumice prophylaxis experimental group and a non-pumice control group of teeth were randomly assigned in a contralateral quadrant pattern within each patient. A total of 508 teeth were bonded and monitored over 3 months for bond failures. There were 35 total failures (6.9%) with 6 (2.4%) in the pumice group and 29 (11.4%) in the non-pumice group. Bond failures were compared as a total number between groups and also as the number of patients who experienced bond failures with each method using Chi-square analysis. There were statistically significant differences both in the total number of bond failures (P \u3c .001) and in the number of patients with bond failures between groups (P \u3c .01). A significantly lower and clinically acceptable bond failure rate was demonstrated when using Transbond Plus SEP after pumice prophylaxis. This study produced strong evidence to suggest the need for pumice prophylaxis in orthodontic bonding when using SEP

    Den siste fasen

    Get PDF
    Studentarbeid i sykepleie (bachelorgrad) - Universitetet i Nordland, Bodø, 201

    IterTunnel; a Method for Predicting and Evaluating Ligand EgressTunnels in Proteins with Buried Active Sites

    Get PDF
    Poster Presentation: The computational prediction of ligand entry and egress paths in proteins has become an emerging topic in computational biology due to the potential for estimating kinetic properties of drug binding. These properties are related to important pharmacological quantities such as the kon and koff rate of drugs [1,2].We have investigated the influence of protein flexibility on tunnel prediction using geometric methods by comparing tunnels identified in static structures with those found in structural ensembles of three CYP isozymes. We found drastic differences between tunnels predicted in the crystal structures as opposed to those predicted in the ensembles [3]. Furthermore, we found significant differences between tunnels identified in the apo versus the holo protein ensembles [3]. While geometric prediction provides a good starting point for tunnel prediction, in order to estimate kinetic properties, more detailed investigations of the ligand binding process are required. We have developed a tunnel prediction methodology, IterTunnel, which predicts tunnels in proteins and estimates the free energy of ligand unbinding using a combination of geometric tunnel prediction with steered molecular dynamics and umbrella sampling [4]. Applying this new method to cytochrome P450 2B6 (CYP2B6), we demonstrate that the ligand itself plays an important role in reshaping tunnels as it traverses through a protein. This process results in the exposure of new tunnels and the closure of pre-existing tunnels as the ligand migrates from the active site. We found that many of the tunnels that are exposed due to ligand-induced conformational changes are amongst the most energetically favorable tunnels for ligand egress in CYP2B6 [4]

    Science granting councils in Sub-Saharan Africa : final technical report

    Get PDF

    A crucial role of the mitochondrial protein import receptor MOM19 for the biogenesis of mitochondria

    Get PDF
    The novel genetic method of "sheltered RIP" (repeat induced point mutation) was used to generate a Neurospora crassa mutant in which MOM19, a component of the protein import machinery of the mitochondrial outer membrane, can be depleted. Deficiency in MOM19 resulted in a severe growth defect, but the cells remained viable. The number of mitochondrial profiles was not grossly changed, but mutant mitochondria were highly deficient in cristae membranes, cytochromes, and protein synthesis activity. Protein import into isolated mutant mitochondria was decreased by factors of 6 to 30 for most proteins from all suborganellar compartments. Proteins like the ADP/ATP carrier, MOM19, and cytochrome c, whose import into wild-type mitochondria occurs independently of MOM19 became imported normally showing that the reduced import activities are solely caused by a lack of MOM19. Depletion of MOM19 reveals a close functional relationship between MOM19 and MOM22, since loss of MOM19 led to decreased levels of MOM22 and reduced protein import through MOM22. Furthermore, MOM72 does not function as a general backup receptor for MOM19 suggesting that these two proteins have distinct precursor specificities. These findings demonstrate that the import receptor MOM19 fulfills an important role in the biogenesis of mitochondria and that it is essential for the formation of mitochondria competent in respiration and phosphorylation

    Metrics for measuring distances in configuration spaces

    Full text link
    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. We show that these metrics correlate well with the RMSD between two configurations if this RMSD is obtained from a global minimization over all translations, rotations and permutations of atomic indices. We introduce a Monte Carlo approach to obtain this global minimum of the RMSD between configurations

    Disaster Resilience Education and Research Roadmap for Europe 2030 : ANDROID Report

    Get PDF
    A disaster resilience education and research roadmap for Europe 2030 has been launched. This roadmap represents an important output of the ANDROID disaster resilience network, bringing together existing literature in the field, as well as the results of various analysis and study projects undertaken by project partners.The roadmap sets out five key challenges and opportunities in moving from 2015 to 2030 and aimed at addressing the challenges of the recently announced Sendai Framework for Disaster Risk Reduction 2015-2030. This roadmap was developed as part of the ANDROID Disaster Resilience Network, led by Professor Richard Haigh of the Global Disaster Resilience Centre (www.hud.ac.uk/gdrc ) at the School of Art, Design and Architecture at the University of Huddersfield, UK. The ANDROID consortium of applied, human, social and natural scientists, supported by international organisations and a stakeholder board, worked together to map the field in disaster resilience education, pool their results and findings, develop interdisciplinary explanations, develop capacity, move forward innovative education agendas, discuss methods, and inform policy development. Further information on ANDROID Disaster Resilience network is available at: http://www.disaster-resilience.netAn ANDROID Disaster Resilience Network ReportANDROI
    • …
    corecore