481 research outputs found

    Piling and avalanches of magnetized particles

    Full text link
    We performed computer simulations based on a two-dimensional Distinct Element Method to study granular systems of magnetized spherical particles. We measured the angle of repose and the surface roughness of particle piles, and we studied the effect of magnetization on avalanching. We report linear dependence of both angle of repose and surface roughness on the ratio ff of the magnetic dipole interaction and the gravitational force (\emph{interparticle force ratio}). There is a difference in avalanche formation at small and at large interparticle force ratios. The transition is at fc7f_c \approx 7. For f<fcf < f_c the particles forming the avalanches leave the system in a quasi-continuous granular flow (\emph{granular regime}), while for f>fcf > f_c the avalanches are formed by long particle clusters (\emph{correlated regime}). The transition is not sharp. We give plausible estimates for fcf_c based on stability criteria.Comment: 9 pages, 7 figure

    Interstitial gas and density-segregation in vertically-vibrated granular media

    Full text link
    We report experimental studies of the effect of interstitial gas on mass-density-segregation in a vertically-vibrated mixture of equal-sized bronze and glass spheres. Sufficiently strong vibration in the presence of interstitial gas induces vertical segregation into sharply separated bronze and glass layers. We find that the segregated steady state (i.e., bronze or glass layer on top) is a sensitive function of gas pressure and viscosity, as well as vibration frequency and amplitude. In particular, we identify distinct regimes of behavior that characterize the change from bronze-on-top to glass-on-top steady-state.Comment: 4 pages, 5 figures, submitted to PRL; accepted in PRE as rapid communication, with revised text and reference

    Force Dynamics in Weakly Vibrated Granular Packings

    Get PDF
    The oscillatory force F_b^ac on the bottom of a rigid, vertically vibrated, grain filled column, reveals rich granular dynamics, even when the peak acceleration of the vibrations is signicantly less than the gravitational acceleration at the earth's surface. For loose packings or high frequencies, F_b^ac 's dynamics are dominated by grain motion. For moderate driving conditions in more compact samples, grain motion is virtually absent, but F_b^ac nevertheless exhibits strongly nonlinear and hysteretic behavior, evidencing a granular regime dominated by nontrivial force-network dynamics.Comment: 4 pages, 5 figure

    Stretching and folding versus cutting and shuffling: An illustrated perspective on mixing and deformations of continua

    Full text link
    We compare and contrast two types of deformations inspired by mixing applications -- one from the mixing of fluids (stretching and folding), the other from the mixing of granular matter (cutting and shuffling). The connection between mechanics and dynamical systems is discussed in the context of the kinematics of deformation, emphasizing the equivalence between stretches and Lyapunov exponents. The stretching and folding motion exemplified by the baker's map is shown to give rise to a dynamical system with a positive Lyapunov exponent, the hallmark of chaotic mixing. On the other hand, cutting and shuffling does not stretch. When an interval exchange transformation is used as the basis for cutting and shuffling, we establish that all of the map's Lyapunov exponents are zero. Mixing, as quantified by the interfacial area per unit volume, is shown to be exponentially fast when there is stretching and folding, but linear when there is only cutting and shuffling. We also discuss how a simple computational approach can discern stretching in discrete data.Comment: REVTeX 4.1, 9 pages, 3 figures; v2 corrects some misprints. The following article appeared in the American Journal of Physics and may be found at http://ajp.aapt.org/resource/1/ajpias/v79/i4/p359_s1 . Copyright 2011 American Association of Physics Teachers. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the AAP

    Tolerance and Sensitivity in the Fuse Network

    Full text link
    We show that depending on the disorder, a small noise added to the threshold distribution of the fuse network may or may not completely change the subsequent breakdown process. When the threshold distribution has a lower cutoff at a finite value and a power law dependence towards large thresholds with an exponent which is less than 0.16±0.030.16\pm0.03, the network is not sensitive to the added noise, otherwise it is. The transition between sensitivity or not appears to be second order, and is related to a localization-delocalization transition earlier observed in such systems.Comment: 12 pages, 3 figures available upon request, plain Te

    Progress toward a 30 percent-efficient, monolithic, three-junction, two-terminal concentrator solar cell for space applications

    Get PDF
    Component efficiencies of 0.2/sq cm cells at approximately 100x AMO light concentration and 80 C temperatures are not at 15.3 percent for a 1.9 eV AlGaAs top cell, 9.9 percent for a 1.4 eV GaAs middle cell under a 1.9 eV AlGaAs filter, and 2.4 percent for a bottom 1.0 eV InGaAs cell under a GaAs substrate. The goal is to continue improvement in these performance levels and to sequentially grow these devices on a single substrate to give 30 percent efficient, monolithic, two-terminal, three-junction space concentrator cells. The broad objective is a 30 percent efficient monolithic two-terminal cell that can operate under 25 to 100x AMO light concentrations and at 75 to 100 C cell temperatures. Detailed modeling predicts that this requires three junctions. Two options are being pursued, and both use a 1.9 eV AlGaAs top junction and a 1.4 eV GaAs middle junction grown by a 1 atm OMVPE on a lattice matched substrate. Option 1 uses a low-doped GaAs substrate with a lattice mismatched 1.0 eV InGaAs cell formed on the back of the substrate. Option 2 uses a Ge substrate to which the AlGaAs and GaAs top junctions are lattice matched, with a bottom 0.7 eV Ge junction formed near the substrate interface with the GaAs growth. The projected efficiency contributions are near 16, 11, and 3 percent, respectively, from the top, middle, and bottom junctions

    Ecological specialization to fluctuating resources prevents long-distance migratory raptors from becoming sedentary on islands.

    Get PDF
    Background The adaptive transition between behavioral strategies, such as the shift from migratoriness to sedentariness, remains an outstanding question in evolutionary ecology. Density-dependent variation in the age of first breeding has been proposed as a feasible mechanism through which long-lived migratory birds with deferred sexual maturity should become sedentary to persist on islands. Although this pattern seems to hold for most raptors and herons, a few exceptions have been identified. One of these exceptions is the Eleonora's falcon, a long-distance migratory bird, which shows one of the most peculiar adaptations in the timing of reproduction and food requirements among raptors. Methodology/Principal Findings Here, we compiled data concerning demography, banding recoveries and satellite tracking of Eleonora's falcons to discuss likely explanations for the exceptional behavior of this insular long-distance migratory species. Conclusions/Significance New data reveal that Eleonora's falcons do return to the natal colonies in their first year and young birds are able to breed. However, in contrast to previous hypothesis, the highly specialized strategy of this and other ecologically similar species, as well as the virtual lack of food during winter at breeding areas prevent them from becoming sedentary on islands. Although the ultimate mechanisms underlying the process of sedentarization remain poorly understood, the evidence provided reveal the existence of important trade-offs associated with ecological specialization that may become particularly relevant in the present context of global change

    Anomalous density dependence of static friction in sand

    Full text link
    We measured experimentally the static friction force FsF_s on the surface of a glass rod immersed in dry sand. We observed that FsF_s is extremely sensitive to the closeness of packing of grains. A linear increase of the grain-density yields to an exponentially increasing friction force. We also report on a novel periodicity of FsF_s during gradual pulling out of the rod. Our observations demonstrate the central role of grain bridges and arches in the macroscopic properties of granular packings.Comment: plain tex, 6 pages, to appear in Phys.Rev.

    Stochastic Model for the Motion of a Particle on an Inclined Rough Plane and the Onset of Viscous Friction

    Full text link
    Experiments on the motion of a particle on an inclined rough plane have yielded some surprising results. For example, it was found that the frictional force acting on the ball is viscous, {\it i.e.} proportional to the velocity rather than the expected square of the velocity. It was also found that, for a given inclination of the plane, the velocity of the ball scales as a power of its radius. We present here a one dimensional stochastic model based on the microscopic equations of motion of the ball, which exhibits the same behaviour as the experiments. This model yields a mechanism for the origins of the viscous friction force and the scaling of the velocity with the radius. It also reproduces other aspects of the phase diagram of the motion which we will discuss.Comment: 19 pages, latex, 11 postscript figures in separate uuencoded fil
    corecore