3,923 research outputs found
Stem cell mechanical behaviour modelling: substrateâs curvature influence during adhesion
Recent experiments hint that adherent cells are sensitive to their substrate curvature. It is already well known that cells behaviour can be regulated by the mechanical properties of their environment. However, no mechanisms have been established regarding the influence of cell-scale curvature of the substrate. Using a numerical cell model, based on tensegrity structures theory and the non-smooth contact dynamics method, we propose to investigate the mechanical state of adherent cells on concave and convex hemispheres. Our mechanical cell model features a geometrical description of intracellular components, including the cell membrane, the focal adhesions, the cytoskeleton filament networks, the stress fibres, the microtubules, the nucleus membrane and the nucleoskeleton. The cell model has enabled us to analyse the evolution of the mechanical behaviour of intracellular components with varying curvature radii and with the removal of part of these components. We have observed the influence of the convexity of the substrate on the cell shape, the cytoskeletal force networks as well as on the nucleus strains. The more convex the substrate, the more tensed the stress fibres and the cell membrane, the more compressed the cytosol and the microtubules, leading to a stiffer cell. Furthermore, the more concave the substrate, the more stable and rounder the nucleus. These findings achieved using a verified virtual testing methodology, in particular regarding the nucleus stability, might be of significant importance with respect to the division and differentiation of mesenchymal stem cells. These results can also bring some hindsights on cell migration on curved substrates
Rates of erosion and landscape change along the Blue Ridge escarpment, southern Appalachian Mountains, estimated from in situ cosmogenic 10Be
The Blue Ridge escarpment, located within the southern Appalachian Mountains of Virginia and North Carolina, forms a distinct, steep boundary between the lower-elevation Piedmont and higher-elevation Blue Ridge physiographic provinces. To understand better the rate at which this landform and the adjacent landscape are changing, we measured cosmogenic 10Be in quartz separated from sediment samples (nâ=â50) collected in thirty-two streams and from three exposed bedrock outcrops along four transects normal to the escarpment, allowing us to calculate erosion rates integrated over 104â105 years. These basin-averaged erosion rates (5.4â49âm My-1) are consistent with those measured elsewhere in the southern Appalachians and show a positive relationship between erosion rate and average basin slope. Erosion rates show no relationship with basin size or relative position of the Brevard fault zone, a fundamental structural element of the region. The cosmogenic isotopic data, when considered along with the distribution of average basin slopes in each physiographic province, suggest that the escarpment is eroding on average more rapidly than the Blue Ridge uplands, which are eroding more rapidly than the Piedmont lowlands. This difference in erosion rates by geomorphic setting suggests that the elevation difference between the uplands and lowlands adjacent to the escarpment is being reduced but at extremely slow rates
Energy Embodiment in Brazilian Agriculture: An Overview of 23 Crops
The amount of energy required to produce a commodity or to supply a service varies from one production system to another and consequently giving rise to differing levels of environmental efficiency. Moreover, since energy prices have been continuously increasing over time, this energy amount may be a factor that has economic worth. Biomass production has a variety of end-products such as food, energy, and fiber; thus, taking into account the similarity in end-product of different crops (e.g.: sunflower, peanuts, or soybean for oil) it is possible to evaluate which crops require less energy per functional unit, such as starch, oil, and protein. This information can be used in decision-making about policies for food safety or bioenergy. In this study, 23 crops were evaluated allowing for a comparison in terms of energy embodied per functional unit. Crops were grouped as follows: starch, oil, horticultural, perennial and fiber, to provide for a deeper analysis of alternatives for the groups, and subsidize further studies comparing conventional and alternative production systems such as organic or genetically modified organisms, in terms of energy. The best energy balance observed was whole sugarcane (juice, bagasse and straw) with a surplus of 268 GJ haâ1 yrâ1; palm shows the highest energy return on investment with a ratio of approximately 30:1. For carbohydrates and protein production, cassava and soybean, respectively, emerged as the crops offering the greatest energy savings in the production of these functional foods
Night MattersâWhy the Interdisciplinary Field of âNight Studiesâ Is Needed
The night has historically been neglected in both disciplinary and interdisciplinary research. To some extent, this is not surprising, given the diurnal bias of human researchers and the difficulty of performing work at night. The night is, however, a critical element of biological, chemical, physical, and social systems on Earth. Moreover, research into social issues such as inequality, demographic changes, and the transition to a sustainable economy will be compromised if the night is not considered. Recent years, however, have seen a surge in research into the night. We argue that ânight studiesâ is on the cusp of coming into its own as an interdisciplinary field, and that when it does, the field will consider questions that disciplinary researchers have not yet thought to ask
DiVinE-CUDA - A Tool for GPU Accelerated LTL Model Checking
In this paper we present a tool that performs CUDA accelerated LTL Model
Checking. The tool exploits parallel algorithm MAP adjusted to the NVIDIA CUDA
architecture in order to efficiently detect the presence of accepting cycles in
a directed graph. Accepting cycle detection is the core algorithmic procedure
in automata-based LTL Model Checking. We demonstrate that the tool outperforms
non-accelerated version of the algorithm and we discuss where the limits of the
tool are and what we intend to do in the future to avoid them
Inter-vehicle gap statistics on signal-controlled crossroads
We investigate a microscopical structure in a chain of cars waiting at a red
signal on signal-controlled crossroads. Presented is an one-dimensional
space-continuous thermodynamical model leading to an excellent agreement with
the data measured.Moreover, we demonstrate that an inter-vehicle spacing
distribution disclosed in relevant traffic data agrees with the thermal-balance
distribution of particles in the thermodynamical traffic gas (discussed in [1])
with a high inverse temperature (corresponding to a strong traffic congestion).
Therefore, as we affirm, such a system of stationary cars can be understood as
a specific state of the traffic sample operating inside a congested traffic
stream.Comment: 6 pages, 4 figures, accepted for publication in J. Phys. A: Math.
Theo
Laudatores Temporis Acti, or Why Cosmology is Alive and Well - A Reply to Disney
A recent criticism of cosmological methodology and achievements by Disney
(2000) is assessed. Some historical and epistemological fallacies in the said
article have been highlighted. It is shown that---both empirically and
epistemologically---modern cosmology lies on sounder foundations than it is
portrayed. A brief historical account demonstrates that this form of
unsatisfaction with cosmology has had a long tradition, and rather meagre
results in the course of the XX century.Comment: 11 pages, no figures; a criticism of astro-ph/0009020; Gen. Rel.
Grav., accepted for publicatio
Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy.
Leishmaniasis is a geographically widespread severe disease, with an increasing incidence of two million cases per year and 350 million people from 88 countries at risk. The causative agents are species of Leishmania, a protozoan flagellate. Visceral leishmaniasis, the most severe form of the disease, lethal if untreated, is caused by species of the Leishmania donovani complex. These species are morphologically indistinguishable but have been identified by molecular methods, predominantly multilocus enzyme electrophoresis. We have conducted a multifactorial genetic analysis that includes DNA sequences of protein-coding genes as well as noncoding segments, microsatellites, restriction-fragment length polymorphisms, and randomly amplified polymorphic DNAs, for a total of approximately 18,000 characters for each of 25 geographically representative strains. Genotype is strongly correlated with geographical (continental) origin, but not with current taxonomy or clinical outcome. We propose a new taxonomy, in which Leishmania infantum and L. donovani are the only recognized species of the L. donovani complex, and we present an evolutionary hypothesis for the origin and dispersal of the species. The genus Leishmania may have originated in South America, but diversified after migration into Asia. L. donovani and L. infantum diverged approximately 1 Mya, with further divergence of infraspecific genetic groups between 0.4 and 0.8 Mya. The prevailing mode of reproduction is clonal, but there is evidence of genetic exchange between strains, particularly in Africa
- âŚ