3,138 research outputs found
Binary Fluids with Long Range Segregating Interaction I: Derivation of Kinetic and Hydrodynamic Equations
We study the evolution of a two component fluid consisting of ``blue'' and
``red'' particles which interact via strong short range (hard core) and weak
long range pair potentials. At low temperatures the equilibrium state of the
system is one in which there are two coexisting phases. Under suitable choices
of space-time scalings and system parameters we first obtain (formally) a
mesoscopic kinetic Vlasov-Boltzmann equation for the one particle position and
velocity distribution functions, appropriate for a description of the phase
segregation kinetics in this system. Further scalings then yield Vlasov-Euler
and incompressible Vlasov-Navier-Stokes equations. We also obtain, via the
usual truncation of the Chapman-Enskog expansion, compressible
Vlasov-Navier-Stokes equations.Comment: TeX, 50 page
Electromagnetic wave absorption and structural properties of wide-band absorber made of graphene-printed glass-fibre composite
Lightweight composites combining electromagnetic wave absorption and excellent mechanical properties are required in spacecraft and aircraft. A one- dimensional metamaterial absorber consisting of a stack of glass fibre/epoxy layers and graphene nanoplatelets/epoxy films was proposed and fabricated through a facile air-spraying based printing technology and a liquid resin infusion method. The production process allows an optimum dispersion of graphene nanoplatelets, promoting adhesion and mechanical integration of the glass fibre/epoxy layers with the graphene nanoplatelets/epoxy films. According to experimental results, the proposed wide-band absorber provides a reflection coefficient lower than −10 dB in the range 8.5–16.7 GHz and an improvement of flexural modulus of more than 15%, with a total thickness of ∼1 mm. Outstanding electromagnetic wave absorption and mechanical performance make the proposed absorber more competitive in aeronautical and aerospace applications
Kinetics of a Model Weakly Ionized Plasma in the Presence of Multiple Equilibria
We study, globaly in time, the velocity distribution of a spatially
homogeneous system that models a system of electrons in a weakly ionized
plasma, subjected to a constant external electric field . The density
satisfies a Boltzmann type kinetic equation containing a full nonlinear
electron-electron collision term as well as linear terms representing
collisions with reservoir particles having a specified Maxwellian distribution.
We show that when the constant in front of the nonlinear collision kernel,
thought of as a scaling parameter, is sufficiently strong, then the
distance between and a certain time dependent Maxwellian stays small
uniformly in . Moreover, the mean and variance of this time dependent
Maxwellian satisfy a coupled set of nonlinear ODE's that constitute the
``hydrodynamical'' equations for this kinetic system. This remain true even
when these ODE's have non-unique equilibria, thus proving the existence of
multiple stabe stationary solutions for the full kinetic model. Our approach
relies on scale independent estimates for the kinetic equation, and entropy
production estimates. The novel aspects of this approach may be useful in other
problems concerning the relation between the kinetic and hydrodynamic scales
globably in time.Comment: 30 pages, in TeX, to appear in Archive for Rational Mechanics and
Analysis: author's email addresses: [email protected],
[email protected], [email protected],
[email protected], [email protected]
Propagation of Chaos for a Thermostated Kinetic Model
We consider a system of N point particles moving on a d-dimensional torus.
Each particle is subject to a uniform field E and random speed conserving
collisions. This model is a variant of the Drude-Lorentz model of electrical
conduction. In order to avoid heating by the external field, the particles also
interact with a Gaussian thermostat which keeps the total kinetic energy of the
system constant. The thermostat induces a mean-field type of interaction
between the particles. Here we prove that, starting from a product measure, in
the large N limit, the one particle velocity distribution satisfies a self
consistent Vlasov-Boltzmann equation.. This is a consequence of "propagation of
chaos", which we also prove for this model.Comment: This version adds affiliation and grant information; otherwise it is
unchange
Conditional Adversarial Camera Model Anonymization
The model of camera that was used to capture a particular photographic image
(model attribution) is typically inferred from high-frequency model-specific
artifacts present within the image. Model anonymization is the process of
transforming these artifacts such that the apparent capture model is changed.
We propose a conditional adversarial approach for learning such
transformations. In contrast to previous works, we cast model anonymization as
the process of transforming both high and low spatial frequency information. We
augment the objective with the loss from a pre-trained dual-stream model
attribution classifier, which constrains the generative network to transform
the full range of artifacts. Quantitative comparisons demonstrate the efficacy
of our framework in a restrictive non-interactive black-box setting.Comment: ECCV 2020 - Advances in Image Manipulation workshop (AIM 2020
Validation of a Dietary Screening Tool in a Middle-Aged Appalachian Population
Proactive nutrition screening is an effective public health strategy for identifying and targeting individuals who could benefit from making dietary improvements for primary and secondary prevention of disease. The Dietary Screening Tool (DST) was developed and validated to assess nutritional risk among rural older adults. The purpose of this study was to evaluate the utility and validity of the DST to identify nutritional risk in middle-aged adults. This cross-sectional study in middle-aged adults (45–64 year olds, n = 87) who reside in Appalachia, examined nutritional status using an online health survey, biochemical measures, anthropometry, and three representative 24-h dietary recalls. The Healthy Eating Index (HEI) was calculated to describe overall diet quality. Adults identified by the DST with a nutrition risk had lower HEI scores (50 vs. 64, p \u3c 0.001) and were much more likely to also be considered at dietary risk by the HEI (OR 11.6; 3.2–42.6) when compared to those not at risk. Those at risk had higher energy-adjusted total fat, saturated fat, and added sugar intakes and lower intakes of dietary fiber, and several micronutrients than those classified as not at risk by the DST. Similarly, the at-risk group had significantly lower serum levels of α-carotene, β-carotene, cryptoxanthin, lutein, and zeaxanthin but did not differ in retinol or methylmalonic acid compared with those not at risk. The DST is a valid tool to identify middle-aged adults with nutritional risk
Validation of a Dietary Screening Tool in a Middle-Aged Appalachian Population
Proactive nutrition screening is an effective public health strategy for identifying and targeting individuals who could benefit from making dietary improvements for primary and secondary prevention of disease. The Dietary Screening Tool (DST) was developed and validated to assess nutritional risk among rural older adults. The purpose of this study was to evaluate the utility and validity of the DST to identify nutritional risk in middle-aged adults. This cross-sectional study in middle-aged adults (45–64 year olds, n = 87) who reside in Appalachia, examined nutritional status using an online health survey, biochemical measures, anthropometry, and three representative 24-h dietary recalls. The Healthy Eating Index (HEI) was calculated to describe overall diet quality. Adults identified by the DST with a nutrition risk had lower HEI scores (50 vs. 64, p \u3c 0.001) and were much more likely to also be considered at dietary risk by the HEI (OR 11.6; 3.2–42.6) when compared to those not at risk. Those at risk had higher energy-adjusted total fat, saturated fat, and added sugar intakes and lower intakes of dietary fiber, and several micronutrients than those classified as not at risk by the DST. Similarly, the at-risk group had significantly lower serum levels of α-carotene, β-carotene, cryptoxanthin, lutein, and zeaxanthin but did not differ in retinol or methylmalonic acid compared with those not at risk. The DST is a valid tool to identify middle-aged adults with nutritional risk
Testing for a large local void by investigating the Near-Infrared Galaxy Luminosity Function
Recent cosmological modeling efforts have shown that a local underdensity on
scales of a few hundred Mpc (out to z ~ 0.1), could produce the apparent
acceleration of the expansion of the universe observed via type Ia supernovae.
Several studies of galaxy counts in the near-infrared (NIR) have found that the
local universe appears under-dense by ~25-50% compared with regions a few
hundred Mpc distant. Galaxy counts at low redshifts sample primarily L ~ L*
galaxies. Thus, if the local universe is under-dense, then the normalization of
the NIR galaxy luminosity function (LF) at z>0.1 should be higher than that
measured for z 90%) spectroscopic
sample of 1436 galaxies selected in the H-band to study the normalization of
the NIR LF at 0.1<z<0.3 and address the question of whether or not we reside in
a large local underdensity. We find that for the combination of our six fields,
the product phi* L* at 0.1 < z < 0.3 is ~ 30% higher than that measured at
lower redshifts. While our statistical errors in this measurement are on the
~10% level, we find the systematics due to cosmic variance may be larger still.
We investigate the effects of cosmic variance on our measurement using the
COSMOS cone mock catalogs from the Millennium simulation and recent empirical
estimates. We find that our survey is subject to systematic uncertainties due
to cosmic variance at the 15% level ($1 sigma), representing an improvement by
a factor of ~ 2 over previous studies in this redshift range. We conclude that
observations cannot yet rule out the possibility that the local universe is
under-dense at z<0.1.Comment: Accepted for publication in Ap
Paraconductivity of K-doped SrFe2As2 superconductor
Paraconductivity of the optimally K-doped SrFe2As2 superconductor is
investigated within existing fluctuation mechanisms. The in-plane excess
conductivity has been measured in high quality single crystals, with a sharp
superconducting transition at Tc=35.5K and a transition width less than 0.3K.
The data have been also acquired in external magnetic field up to 14T. We show
that the fluctuation conductivity data in zero field and for temperatures close
to Tc, can be explained within a three-dimensional Lawrence-Doniach theory,
with a negligible Maki-Thompson contribution. In the presence of the magnetic
field, it is shown that paraconductivity obeys the three-dimensional
Ullah-Dorsey scaling law, above 2T and for H||c. The estimated upper critical
field and the coherence length nicely agree with the available experimental
data.Comment: 12 pages, 5 figure
- …