73 research outputs found

    COX-1 (PTGS1) and COX-2 (PTGS2) polymorphisms, NSAID interactions, and risk of colon and rectal cancers in two independent populations

    Get PDF
    Nonsteroidal anti-inflammatory drugs (NSAIDs) target the prostaglandin H synthase enzymes, cyclooxygenase (COX)-1 and -2, and reduce colorectal cancer risk. Genetic variation in the genes encoding these enzymes may be associated with changes in colon and rectal cancer risk and in NSAID efficacy

    Salmonella Typhimurium Type III Secretion Effectors Stimulate Innate Immune Responses in Cultured Epithelial Cells

    Get PDF
    Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP) kinase and NF-κB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies

    Interaction between polymorphisms in aspirin metabolic pathways, regular aspirin use and colorectal cancer risk: A case-control study in unselected white European populations

    Get PDF
    Regular aspirin use is associated with reduced risk of colorectal cancer (CRC). Variation in aspirin’s chemoprevention efficacy has been attributed to the presence of single nucleotide polymorphisms (SNPs). We conducted a meta-analysis using two large population-based case-control datasets, the UK-Leeds Colorectal Cancer Study Group and the NIH-Colon Cancer Family Registry, having a combined total of 3325 cases and 2262 controls. The aim was to assess 42 candidate SNPs in 15 genes whose association with colorectal cancer risk was putatively modified by aspirin use, in the literature. Log odds ratios (ORs) and standard errors were estimated for each dataset separately using logistic regression adjusting for age, sex and study site, and dataset-specific results were combined using random effects meta-analysis. Meta-analysis showed association between SNPs rs6983267, rs11694911 and rs2302615 with CRC risk reduction (All P<0.05). Association for SNP rs6983267 in the CCAT2 gene only was noteworthy after multiple test correction (P = 0.001). Site-specific analysis showed association between SNPs rs1799853 and rs2302615 with reduced colon cancer risk only (P = 0.01 and P = 0.004, respectively), however neither reached significance threshold following multiple test correction. Meta-analysis of SNPs rs2070959 and rs1105879 in UGT1A6 gene showed interaction between aspirin use and CRC risk (Pinteraction = 0.01 and 0.02, respectively); stratification by aspirin use showed an association for decreased CRC risk for aspirin users having a wild-type genotype (rs2070959 OR = 0.77, 95% CI = 0.68–0.86; rs1105879 OR = 0.77 95% CI = 0.69–0.86) compared to variant allele cariers. The direction of the interaction however is in contrast to that published in studies on colorectal adenomas. Both SNPs showed potential site-specific interaction with aspirin use and colon cancer risk only (Pinteraction = 0.006 and 0.008, respectively), with the direction of association similar to that observed for CRC. Additionally, they showed interaction between any non-steroidal anti-inflammatory drugs (including aspirin) use and CRC risk (Pinteraction = 0.01 for both). All gene x environment (GxE) interactions however were not significant after multiple test correction. Candidate gene investigation indicated no evidence of GxE interaction between genetic variants in genes involved in aspirin pathways, regular aspirin use and colorectal cancer risk

    Gene Expression Analysis of Forskolin Treated Basilar Papillae Identifies MicroRNA181a as a Mediator of Proliferation

    Get PDF
    Auditory hair cells spontaneously regenerate following injury in birds but not mammals. A better understanding of the molecular events underlying hair cell regeneration in birds may allow for identification and eventually manipulation of relevant pathways in mammals to stimulate regeneration and restore hearing in deaf patients.Gene expression was profiled in forskolin treated (i.e., proliferating) and quiescent control auditory epithelia of post-hatch chicks using an Affymetrix whole-genome chicken array after 24 (n = 6), 48 (n = 6), and 72 (n = 12) hours in culture. In the forskolin-treated epithelia there was significant (p<0.05; >two-fold change) upregulation of many genes thought to be relevant to cell cycle control and inner ear development. Gene set enrichment analysis was performed on the data and identified myriad microRNAs that are likely to be upregulated in the regenerating tissue, including microRNA181a (miR181a), which is known to mediate proliferation in other systems. Functional experiments showed that miR181a overexpression is sufficient to stimulate proliferation within the basilar papilla, as assayed by BrdU incorporation. Further, some of the newly produced cells express the early hair cell marker myosin VI, suggesting that miR181a transfection can result in the production of new hair cells.These studies have identified a single microRNA, miR181a, that can cause proliferation in the chicken auditory epithelium with production of new hair cells

    Genetic variation in UGT genes modify the associations of NSAIDs with risk of colorectal cancer: Colon cancer family registry: Genetic Variants inUgtandCyp2c9, Nsaid Use and Colorectal Cancer Risk

    Get PDF
    The use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with reduced risk of colorectal neoplasia. Previous studies have reported that polymorphisms in NSAID-metabolizing enzymes central to NSAID metabolism including UDP-glucuronosyltransferases (UGT) and cytochrome P450 (CYP) 2C9 may modify this protective effect. We investigated whether 35 functionally relevant polymorphisms within CYP2C9 and UGT genes were associated with colorectal cancer risk or modified the protective effect of NSAIDs on colorectal cancer susceptibility, using 1,584 colorectal cancer cases and 2,516 unaffected sibling controls from the Colon Cancer Family Registry. A three-SNP genotype in UGT1A6 (G-A-A; Ala7-Thr181-Arg184) and the Asp85 variant in UGT2B15 increased the risk of colorectal cancer (OR 3.87; 95% CI 1.04-14.45 and OR 1.34; 95% CI 1.10-1.63, respectively). We observed interactions between UGT1A3 Thr78Thr (A>G) and NSAID use (p-interaction=0.02), a three-SNP genotype within UGT2B4 and ibuprofen use (p-interaction=0.0018), as well as UGT2B15 Tyr85Asp (T>G) and aspirin use (p-interaction=0.01). The interaction with the UGT2B4 and the UGT2B15 polymorphisms were noteworthy at the 25% FDR level. This study highlights the need for further pharmacogenetic studies to identify individuals who might benefit from NSAID use as part of developing effective strategies for prevention of colorectal neoplasia

    Inferred Allelic Variants of Immunoglobulin Receptor Genes: a system for their evaluation, documentation, and naming

    Get PDF
    Immunoglobulins or antibodies are the main effector molecules of the B-cell lineage and are encoded by hundreds of variable (V), diversity (D), and joining (J) germline genes, which recombine to generate enormous IG diversity. Recently, high-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) of recombined V-(D)-J genes has offered unprecedented insights into the dynamics of IG repertoires in health and disease. Faithful biological interpretation of AIRR-seq studies depends upon the annotation of raw AIRR-seq data, using reference germline gene databases to identify the germline genes within each rearrangement. Existing reference databases are incomplete, as shown by recent AIRR-seq studies that have inferred the existence of many previously unreported polymorphisms. Completing the documentation of genetic variation in germline gene databases is therefore of crucial importance. Lymphocyte receptor genes and alleles are currently assigned by the Immunoglobulins, T cell Receptors and Major Histocompatibility Nomenclature Subcommittee of the International Union of Immunological Societies (IUIS) and managed in IMGT®, the international ImMunoGeneTics information system® (IMGT). In 2017, the IMGT Group reached agreement with a group of AIRR-seq researchers on the principles of a streamlined process for identifying and naming inferred allelic sequences, for their incorporation into IMGT®. These researchers represented the AIRR Community, a network of over 300 researchers whose objective is to promote all aspects of immunoglobulin and T-cell receptor repertoire studies, including the standardization of experimental and computational aspects of AIRR-seq data generation and analysis. The Inferred Allele Review Committee (IARC) was established by the AIRR Community to devise policies, criteria, and procedures to perform this function. Formalized evaluations of novel inferred sequences have now begun and submissions are invited via a new dedicated portal (https://ogrdb.airr-community.org). Here, we summarize recommendations developed by the IARC—focusing, to begin with, on human IGHV genes—with the goal of facilitating the acceptance of inferred allelic variants of germline IGHV genes. We believe that this initiative will improve the quality of AIRR-seq studies by facilitating the description of human IG germline gene variation, and that in time, it will expand to the documentation of TR and IG genes in many vertebrate species

    ON AXIALLY SYMMETRIC, TURBULENT, COMPRESSIBLE MIXING IN THE PRESENCE OF INITIAL BOUNDARY LAYER

    No full text
    • …
    corecore