3,592 research outputs found

    Coherent impurity transport in an attractive binary Bose–Einstein condensate

    Get PDF
    We study the dynamics of a soliton-impurity system modeled in terms of a binary Bose–Einstein condensate. This is achieved by \u27switching off\u27 one of the two self-interaction scattering lengths, giving a two component system where the second component is trapped entirely by the presence of the first component. It is shown that this system possesses rich dynamics, including the identification of unusual \u27weak\u27 dimers that appear close to the zero inter-component scattering length. It is further found that this system supports quasi-stable trimers in regimes where the equivalent single-component gas does not, which is attributed to the presence of the impurity atoms which can dynamically tunnel between the solitons, and maintain the required phase differences that support the trimer state

    Efficient Exploration of Microstructure-Property Spaces via Active Learning

    Get PDF
    In materials design, supervised learning plays an important role for optimization and inverse modeling of microstructure-property relations. To successfully apply supervised learning models, it is essential to train them on suitable data. Here, suitable means that the data covers the microstructure and property space sufficiently and, especially for optimization and inverse modeling, that the property space is explored broadly. For virtual materials design, typically data is generated by numerical simulations, which implies that data pairs can be sampled on demand at arbitrary locations in microstructure space. However, exploring the space of properties remains challenging. To tackle this problem, interactive learning techniques known as active learning can be applied. The present work is the first that investigates the applicability of the active learning strategy query-by-committee for an efficient property space exploration. Furthermore, an extension to active learning strategies is described, which prevents from exploring regions with properties out of scope (i.e., properties that are physically not meaningful or not reachable by manufacturing processes)

    Bandgap narrowing in Mn doped GaAs probed by room-temperature photoluminescence

    Full text link
    The electronic band structure of the (Ga,Mn)As system has been one of the most intriguing problems in solid state physics over the past two decades. Determination of the band structure evolution with increasing Mn concentration is a key issue to understand the origin of ferromagnetism. Here we present room temperature photoluminescence and ellipsometry measurements of Ga_{100%-x}Mn_{x}As alloy. The up-shift of the valence-band is proven by the red shift of the room temperature near band gap emission from the Ga_{100%-x}Mn_{x}As alloy with increasing Mn content. It is shown that even a doping by 0.02 at.% of Mn affects the valence-band edge and it merges with the impurity band for a Mn concentration as low as 0.6 at.%. Both X-ray diffraction pattern and high resolution cross-sectional TEM images confirmed full recrystallization of the implanted layer and GaMnAs alloy formation.Comment: 24 pages, 7 figures, accepted at Phys. Rev. B 201

    Competing global and local completions in visual occlusion.

    Get PDF

    Charge-imbalance effects in intrinsic Josephson systems

    Full text link
    We report on two types of experiments with intrinsic Josephson systems made from layered superconductors which show clear evidence of nonequilibrium effects: 1. In 2-point measurements of IV-curves in the presence of high- frequency radiation a shift of the voltage of Shapiro steps from the canonical value hf/(2e) has been observed. 2. In the IV-curves of double-mesa structures an influence of the current through one mesa on the voltage measured on the other mesa is detected. Both effects can be explained by charge-imbalance on the superconducting layers produced by the quasi-particle current, and can be described successfully by a recently developed theory of nonequilibrium effects in intrinsic Josephson systems.Comment: 8pages, 9figures, submitted to Phys. Rev.

    Bicuspid Aortic Valve: a Review with Recommendations for Genetic Counseling

    Get PDF
    Bicuspid aortic valve (BAV) is the most common congenital heart defect and falls in the spectrum of left-sided heart defects, also known as left ventricular outflow tract obstructive (LVOTO) defects. BAV is often identified in otherwise healthy, asymptomatic individuals, but it is associated with serious long term health risks including progressive aortic valve disease (stenosis or regurgitation) and thoracic aortic aneurysm and dissection. BAV and other LVOTO defects have high heritability. Although recommendations for cardiac screening of BAV in at-risk relatives exist, there are no standard guidelines for providing genetic counseling to patients and families with BAV. This review describes current knowledge of BAV and associated aortopathy and provides guidance to genetic counselors involved in the care of patients and families with these malformations. The heritability of BAV and recommendations for screening are highlighted. While this review focuses specifically on BAV, the principles are applicable to counseling needs for other LVOTO defects

    Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5

    Full text link
    Electronic nematics are exotic states of matter where electronic interactions break a rotational symmetry of the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Intriguingly such phases appear in the copper- and iron-based superconductors, and their role in establishing high-temperature superconductivity remains an open question. Nematicity may take an active part, cooperating or competing with superconductivity, or may appear accidentally in such systems. Here we present experimental evidence for a phase of nematic character in the heavy fermion superconductor CeRhIn5. We observe a field-induced breaking of the electronic tetragonal symmetry of in the vicinity of an antiferromagnetic (AFM) quantum phase transition at Hc~50T. This phase appears in out-of-plane fields of H*~28T and is characterized by substantial in-plane resistivity anisotropy. The anisotropy can be aligned by a small in-plane field component, with no apparent connection to the underlying crystal structure. Furthermore no anomalies are observed in the magnetic torque, suggesting the absence of metamagnetic transitions in this field range. These observations are indicative of an electronic nematic character of the high field state in CeRhIn5. The appearance of nematic behavior in a phenotypical heavy fermion superconductor highlights the interrelation of nematicity and unconventional superconductivity, suggesting nematicity to be a commonality in such materials

    Optimization of the production process of enzymatic activity of Lentinula edodes (Berk.) Pegler in holocelulases.

    Get PDF
    Issues such as fossil fuels and oil supplies have stimulated the search for renewable alternatives such as biofuels. Agricultural crop residues represent an abundant renewable resource for the future of bioethanol. For it to be a viable alternative, the second-generation ethanol which ought to provide a net energy gain, environmental benefits, should be economically viable, and also be produced in large quantities without reducing food supplies. The current difficulty of lignocellulosic biofuel production is the hydrolysis of biomass into sugar. This is a work in which the white-rot Lentinula edodes fungus secretes substantial amounts of hydrolytic enzymes and is useful for degradation of lignocellulosic biomass which have not been described yet. The objective of this investigation was to evaluate the pH effect (5, 6 and 7), agitation (0, 100 rpm and 200 rpm) and also the cultivation time (6, 9 and 12 days). The culture medium was supplemented with agro-industrial residue and the EF 52 strain of the fungus Lentinula edodes was used as a processing agent. A factorial design 22 repeating the central point was performed. Submerged cultivation was conducted in a synthetic medium and was incubated at 25?C. The total protein content was determined as well as the activity of xylanase and cellulase (endoglucanase, exoglucanase and ?-glucosidase). By Pareto diagram, the agitation and pH variables were significant for enzymatic activities. The highest enzyme expression occurred at pH values between 5.0 and 6.0 and above 100 rpm agitation. The exoglucanase was the enzyme which showed the highest activity in terms of cellulases, despite the cultivation time. Regarding the production of other enzymes and proteins, the most significant cultivation time was 12 days
    • …
    corecore