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In materials design, supervised learning plays an important role for optimization and inverse
modeling of microstructure-property relations. To successfully apply supervised learning
models, it is essential to train them on suitable data. Here, suitable means that the data
covers the microstructure and property space sufficiently and, especially for optimization
and inverse modeling, that the property space is explored broadly. For virtual materials
design, typically data is generated by numerical simulations, which implies that data pairs
can be sampled on demand at arbitrary locations in microstructure space. However,
exploring the space of properties remains challenging. To tackle this problem, interactive
learning techniques known as active learning can be applied. The present work is the first
that investigates the applicability of the active learning strategy query-by-committee for an
efficient property space exploration. Furthermore, an extension to active learning strategies
is described, which prevents from exploring regions with properties out of scope
(i.e., properties that are physically not meaningful or not reachable by manufacturing
processes).

Keywords: active learning, adaptive sampling, data generation, inverse modeling, materials design, membership
query synthesis, microstructure-property relations, query-by-committee

1 INTRODUCTION

1.1 Motivation
With regard to natural learning processes, Cohn et al. stated that “in many situations, the learner’s
most powerful tool is its ability to act, to gather data, and to influence the world it is trying to
understand” (Cohn et al., 1996). One attempt to transfer this ability to methods in the field of
machine learning is called active learning. Active learning describes an interactive learning process in
which machine learning models improve with experience and training (Settles, 2012). It is therefore
contrary to the often used approach of gathering data a priori and learn from it afterwards. In fact,
active learning couples both, sampling and training, what typically results in an efficient and broad
data space exploration.

In terms of materials design, the exploration of data spaces is quite important. For a designer, it is
essential to know all possible microstructure configurations and reachable properties of a material in
order to increase the performance of a workpiece. How to delineate these configurations and
properties is described for example in the microstructure sensitive design (MSD) approach (Adams
et al., 2001). Two necessary steps for MSD are 1) to determine the design space yielding a hull of
possible microstructures and 2) to calculate the corresponding properties defining a so-called
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property closure (Fullwood et al., 2010). For complex high-
dimensional microstructure representations, exploring the
design space is, however, challenging. It is even more
challenging, if gathering data is cumbersome, because it is
time-consuming (e.g., running complex numerical
simulations), ties up manpower (e.g., labeling data manually)
or laborious (e.g., performing experiments).

To the authors knowledge, the present work is the first one
that uses the active learning strategy query-by-committee
(Burbidge et al., 2007) for generating microstructure-property
data in materials science. We show that the active learning
strategy can be used to explore microstructure-property spaces
efficiently and that the generated data is better suited to train
accurate machine learning models than data generated via
classical sampling approaches. Moreover, we present an
extension to active learning approaches that aims to avoid
sampling in regions with properties out of scope. This is
necessary, as defining bounds for microstructure spaces is not
always simple and it can happen that active learning techniques
explore regions with properties that are physically not meaningful
or not reachable by manufacturing processes.

1.2 Related Work
Active learning techniques can be grouped into three use-case
specific classes, namely stream-based selective sampling, pool-
based selective sampling and membership query synthesis
(Settles, 2009). The first two mentioned are based either on a
continuous data-stream or an a priori defined pool of data, from
which the active learning algorithm can chose data points to be
labeled. In membership query synthesis, in contrast, the
algorithm is free of choice at which location new data points
are created. Therefore, membership query synthesis is well suited
for virtual data generation on the basis of numerical simulations.

Membership query synthesis goes back to Angluin (1988) for
classification problems and to Cohn et al. (1996) for regression
problems. The technique presented in Cohn et al. (1996) is called
variance reduction. It aims to minimize the output variance of a
machine learning model in order to minimize the future
generalization error. Alternative approaches for regression
problems are maximizing the expected change of a machine
learning model when seeing new data (Cai et al., 2013) or
committee-based approaches like query-by-committee
(Burbidge et al., 2007), where the prediction variance of a
committee consisting of multiple separately trained machine
learning models is minimized. In the present study, we use the
latter approach, as it is straightforward to implement and scales to
complex models (i.e., neural networks). Recent research in active
learning targets the application of deep learning models, see for
example Stark et al. (2015) andWang et al. (2016) for applications
using convolutional neural networks and Zhu and Bento (2017),
Sinha et al. (2019) and Mayer and Timofte (2020) for generative
models.

Instead of actively sampling data spaces, classical space-filling
sampling strategies can be used to generate data without
considering the learning task, see Fang et al. (2000), Simpson
et al. (2001) and Wang and Shan (2006) for an overview. In the
following, we list some of the most popular space-filling sampling

strategies. Latin hypercube design (McKay et al., 2000) aims to
partition the dimensions of the input space into equidistant slices
and places data points such that each slice is covered by one data
point. Orthogonal arrays (Owen, 1992) are special matrices that
define sampling with the aim to sample data spaces uniformly. In
particular, orthogonal arrays can be used to generate uniform
Latin hypercubes (Tang, 1993). Furthermore, low-discrepancy
sequences can be used to cover spaces uniformly with data points,
see for example Niederreiter (1988). Among others, popular
sequences are the Hammersley sequence (Hammersley and
Handscomb, 1964), Halton sequence (Halton, 1964) and Sobol
sequence (Sobol, 1967). In addition to these methods, a common
sampling strategy is to randomly draw samples from a uniform
distribution. However, all of these approaches suffer from the
curse of dimensionality, which means that the effort needed to
sufficiently sample data spaces grows exponentially with the
number of dimensions.

In materials design, the usage of classical sampling strategies is
very common. The framework for data-driven analysis of
materials that is presented in Bessa et al. (2017) for example,
uses data generation on the basis of space-filling sampling
methods, especially the Sobol sequence. In Gupta et al. (2015),
dual-phase 2D-microstructures are generated by randomly
placing particles in a steel matrix. In order to generate
spatially resolved dual-phase microstructure volume elements,
Liu et al. (2015b) uses evenly distributed data of phase volume
fractions. Regarding homogenized microstructural features, in
Iraki et al. (2021), Latin hypercube design is used to generate a
data set of textures for cold rolled steel sheets. Even special
sampling heuristics have been developed for generating sets of
microstructure features, like in Johnson and Kurniawan, 2018.

Also, adaptive sampling techniques are used in materials
design, however, in the sense of an optimization aiming to
identify microstructures with targeted properties. In Liu et al.
(2015a) and Paul et al. (2019), specific machine learning-based
optimization approaches are presented that efficiently guide
sampling to regions in the space of microstructures, where
microstructures with desired properties are expected to be
located. Further statistic-based approaches exist that use
surrogate-based optimization (cf. Forrester and Keane, 2009),
see Nikolaev et al. (2016), Balachandran et al. (2016), Lookman
et al. (2017) and Lookman et al. (2019). Yet, as these approaches
aim to find individual material compositions or microstructures
for certain target properties, they are not applicable for sampling
microstructure-property spaces broadly.

So far, only few publications exist, which describe the usage of
active learning to train a machine learning model while
generating microstructure-property data (Jung et al., 2019;
Kalidindi, 2019; Castillo et al., 2019). The approaches
presented therein are based on variance reduction using
Bayesian models, like Gaussian process regression (GPR), cf.
Seo et al. (2000). Such Bayesian approaches can have a
tremendous advantage when working with experimental
measurements. However, the computational complexity of
GPR increases cubically with the number of data points.
Furthermore, it is worth mentioning the Bayesian approach
described in Tran and Wildey (2021) to solve stochastic
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inverse problems for property-structure linkages. It is the aim of
the approach to model posterior probabilities for microstructures
having desired properties. This is achieved by successively
updating an a priori probability distribution with new sampled
microstructure-property data points. These are generated by
drawing microstructure samples from the actual probability
distribution and evaluating their properties. Afterwards, the
samples are accepted or rejected depending on a certain
criterion. However, this so-called acceptance-rejection
sampling can be disadvantageous in terms of sample
efficiency, as the decision to accept samples is made after
calculating properties.

1.3 Paper Structure
In Section 2 the concept of membership query synthesis is
presented including an extension to avoid sampling in regions
out of scope. Additionally, the applied query-by-committee
approach is described in detail. In Section 3, three numerical
examples are shown to demonstrate the advantage of using active
learning to sample microstructure-property spaces. The results
are discussed in Section 4. The work is summarized in Section 5
and a brief outlook on the application of active learning in virtual
materials design is given.

2 METHODS

2.1 Active Learning via Membership Query
Synthesis
Membership query synthesis follows an iterative procedure that is
sketched schematically in Figure 1, cf. Settles (2012). The
procedure starts with an initial data set of input variables
Xi ∈ Rk and corresponding target variables Y i ∈ Rl. The
mapping from input space X to output space Y is
approximated by a learner:

f: X → Y, y � f x( ), (1)
where x ∈ X ⊂ Rk and y ∈ Y ⊂ Rl. The learner is realized by one
or more supervised learning models. To apply active learning, it is
essential that the learner’s prediction quality can be measured. On
the basis of such ameasure, an optimization is performed with the

objective to find the location X* in the input space X at which the
learner’s prediction quality is likely worst. At this location, a new
data point is generated in order to improve the learner. To get the
corresponding target label Y*, the so-called oracle (in our case a
numerical simulation) is queried. The obtained new data tupleX*,
Y* is added to the data set and the procedure is repeated.

2.2 Avoid Queries in Regions out of Scope
Following the procedure described in Section 2.1, new data
points are generated over the whole input space. In many
applications, this might be appropriate to improve the learner.
However, when the input space bounds cannot be defined
adequately, it is probable that the active learning algorithm
queries for data in regions that are out of interest for the
application case. To avoid sampling in regions out of scope,
the original workflow depicted in Figure 1 can be extended with a
region, cf. Figure 2. The purpose of the region filter is to limit the
optimizer to regions in the input space leading only to output
quantities of interest. In order to set up the region filter, the data
points Xi get an additional class label c ∈ (0, 1), which marks if the
output values are of interest or out of scope. The bounds in the
output space that determine the class label can be defined by the
user.

The region filter is realized by a binary classifier that partitions
the input space depending on the class label by learning the
mapping function

g: X → c, c � g x( ). (2)
In fact, the described extension is similar to Bayesian
optimization approaches that account for unknown constraints
using classification methods, see for example Sacher et al. (2018),
Heese et al. (2019) and Tran et al. (2019).

Often the amount of data that is out of scope is much lower
than the data of interest. If this is the case, one-class classification
methods can be used as region filter, such as isolation forests (Liu
et al., 2008) or one-class support vector machines (Schölkopf
et al., 2001). Both are unsupervised learning methods that delimit
the input space, which is covered by data out of scope. Once
trained, they are used to estimate the class membership of unseen

FIGURE 1 | Iterative procedure of membership query synthesis, cf.
Settles (2012).

FIGURE 2 | Iterative procedure of membership query synthesis (cf.
Settles (2012)) including an extension to avoid sampling in regions out of
scope. The class labels of the data points are represented by Ci ∈ (0, 1).
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data points. For more complex classification problems, this can
also be achieved by deep learning approaches (cf. Chalapathy and
Chawla, 2019), such as autoencoder neural networks (Hinton and
Salakhutdinov, 2006; Sakurada and Yairi, 2014).

2.3 Query-By-Committee for
Microstructure-Property Space Exploration
Originally, query-by-committee was introduced by Seung et al.
(1992) for classification problems. In this study, the query-by-
committee approach following Burbidge et al. (2007) for
regression problems is applied. In this approach, the learner is
realized by a committee of n regression models (here we use
feedforward neural networks). Following the workflow depicted
in Figure 1, the committee members are trained on the actual
data set. However, in this work, each neural network is trained
only on a subset of the data (RayChaudhuri and Hamey, 1995). In
order to query new data points, the microstructure space is
searched for the location at which the committee members
disagree the most. Disagreement is defined by the variance of
the neural network predictions s2 (Krogh and Vedelsby, 1995):

s2 x( ) � ∑
n

η�1
fη x( ) − �f x( )( )

2
, (3)

where fη (x) denotes the property prediction of neural network η
and �f(x) denotes the mean over all predictions at location x. The
location to query the next data point is determined by

Xp � arg max
x

s2 x( )( ). (4)

Certainly, it is challenging here to chose the right number of
regression models and to equip them with sufficient complexity
(e.g., depth of neural networks). Depending on the mapping to
learn, we suggest to assign a lower complexity to the regression
models in the beginning, as the amount of initial data is typically
low. With an increasing amount of data it is possible to increase
the complexity of the regression models, which was, however, not
done in this study. Regarding the number of regression models in
the committee, the similarity of the query-by-committee
approach to Bayesian methods like GPR is worth mentioning
here. GPR can be interpreted as a distribution over functions
(Williams and Rasmussen, 2006), which is also the case for the
query-by-committee approach when the number of committee
members goes to infinity. Though, the overall training time of the
query-by-committee approach increases linearly with an
increasing number of committee members.

In order to extend the query-by-committee approach to avoid
sampling in regions out of scope, first, data points that exceed the
predefined output bounds need to be filtered out from the actual
data set. Then, a classifier is trained on these data points in order
to delimit a region in microstructure space. This region is
excluded from the optimization by adding a soft constraint to
Eq. 4:

Xp � arg max
x

s2 x( ) −W 〈ρ x( )〉( ), (5)

where 〈·〉 denotes the Macaulay brackets and ρ(x) denotes the
distance of x to the decision boundary that is defined by the
classifier. As s2(x) and ρ(x) can be of different magnitudes, the
scalar weight factor W is introduced, which needs to be set in
order to balance the optimization.

In this work, ρ(x) is determined by an isolation forest classifier.
Isolation forest is an outlier detection method that consists of an
ensemble of decision trees. Each tree partitions the input space
randomly until all training data points are isolated. It is assumed
that outliers typically lie in partitions with rather short paths in
the decision tree structures. On the basis of the path lengths, an
anomaly score (in the range of (0, 1)) can be defined for each
observation, see Liu et al. (2008) for details. Therein, it is stated
that data points with an anomaly score < 0.5 can be regarded as
being normal. Consequently, the decision function ρ(x) can be
defined by shifting the anomaly score to the range (−0.5, 0.5), and,
in this work, by multiplying it by −1. The latter needs to be done
because the isolation forest is trained only onmicrostructures that
exceed the predefined property bounds. In this respect, two cases
can occur in Eq. 5. If ρ(x) > 0, the optimization is punished such
that the optimizer is forced to generate candidate microstructures
that do likely not exceed the specified property bounds.
Generating such microstructures then leads to ρ(x) ≤ 0, what
does not affect the optimization at all.

To solve Eqs 4, 5, we use the differential evolution algorithm
by Storn and Price (1997) as it is implemented in Python package
scipy (Virtanen et al., 2020). The neural network models and the
isolation forest classifier applied in this work are based on the
implementation in Python package scikit-learn (Pedregosa et al.,
2011).

3 RESULTS

3.1 Toy Example: Dirac Delta Function
First, a simplistic extreme case is analyzed. The data generating
process considered here is given by an approximation of the Dirac
delta function via a Gaussian distribution

δ x( ) � 1
|α| ��

x
√ e−

x
α( )2 , (6)

with parameter α = 0.1. A set of 500 data points is generated by
randomly drawing samples of x in the range of (−50, 50).
Additionally, 500 data points are generated via query-by-
committee. Therefore, a committee of five neural networks is set
up, which are all trained on a random subset of 80%of the actual data.
The neural networks consist of two layers with five neurons each. To
avoid overfitting, early stopping (Prechelt, 1998) and L2-
regularization (Krogh and Hertz, 1992) is applied with
regularization parameter λ = 0.0001. As activation functions,
rectifiers (ReLU) are used. The mean-squared-error loss function
between true and predicted δ(x) is applied and optimized using the
limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)
optimizer (Liu and Nocedal, 1989). The approach is initialized
with 100 randomly drawn samples.
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The resulting 500 data points and their distribution over x are
shown in Figure 3. The data points generated by random
sampling are distributed almost uniformly over the input
space. All data points are located in regions of lower δ(x). The
maximum δ(x)-value in the randomly sampled data set equals
0.506 208 09. In contrast, the query-by-committee approach
concentrates on sampling the region close to the peak of the
approximated delta function. The maximum δ(x)-value in the
data set equals 5.64189535, which is very close to the maximum of
Eq. 6: δ(x = 0) = 5.64189584. The generated data is available
online, see Morand et al. (2021).

3.2 Identifying Material Model Parameters
The second example is about inferring material model parameters
from given material model responses, which is (like typical
materials design problems) an inverse identification problem, cf.
Mahnken (2004). To solve it, neural networks can be used to
directly learn a mapping from material model responses to model
parameters (Yagawa and Okuda, 1996; Huber, 2000). Such an
approach is for example applied in Huber and Tsakmakis (1999) to
identify constitutive parameters of a finite deformation plasticity
model on the basis of spherical indentation tests. As simulating
spherical indentation tests is time consuming, the usage of active
learning can be beneficial, because it efficiently explores the space
of material model parameters and responses. This characteristic
can be understood as goal-directed sampling, which is essential for
the prediction quality of supervised learning models that are
directly trained on inverse relations (Jordan and Rumelhart, 1992).

In this example, we analyze the identification problem
described in Morand and Helm (2019), as it requires a special
sampling, for which a knowledge-based approach has been

developed. The data generating process is defined by the
hardening model (cf. Helm, 2006):

H sp, β, γ( ) � γ

β
1 − e−βsp( ), (7)

where β and γ are material dependent parameters and sp denotes
the accumulated plastic strain. For the purpose of this study, the
hardening curves are discretized into 20 equidistantly distributed
points in sp ∈ (0.0, 0.2). For sampling, we consider β and γ

β being
inside the ranges (5, 200) and (100, 400), respectively. This yields
a parameter identification problem as it is illustrated in Figure 4.

In total 2,500 discretized hardening curves H i ∈ R20 are
generated by varying β and γ

β using 1) Latin hypercube design,
2) the proposed knowledge-based sampling approach following
Morand and Helm (2019) and 3) query-by-committee. The
knowledge-based approach from Morand and Helm (2019) is
also based on Latin hypercube design, however, the parameter
variations in β are manipulated such that the region of lower β-
values is sampledmore densely (as this region is significant for the
shapes of the hardening curves). The configuration of the query-
by-committee approach here is the same as in Section 3.1, except
for the neural network complexity, which is increased to two
hidden layers with 10 and 15 neurons. The initial data set consists
of 100 randomly sampled data points.

The resulting sets of parameter tuples (β, γβ) chosen by the three
sampling strategies are shown in Figure 5 and are represented in
the following by Bi ∈ R2. Per definition, Latin hypercube design
samples the parameter space almost uniformly. In contrast, the
query-by-committee approach samples the parameter space in a
similar manner as it is done by the knowledge-based approach.
Thereby, the region of lower β-values is sampled even more

FIGURE 3 | The sampled input-output space of the approximated Dirac delta function δ(x) is shown above. 500 samples were generated via random sampling (A)
and query-by-committee, labeled as QBC, (B). Below, the normalized Gaussian kernel density estimation is shown for the data sets generated via random sampling (C)
and query-by-committee (D).
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densely and, in contrast to the knowledge-based approach, also
the bounds of the parameter space are sampled. Naturally, the
three generated data sets have different effects on the prediction
quality of supervised learning models.

In order to show these effects, neural networks are trained on
the data sets. As there is no ground truth to test the trained
models, the generated data is also used for testing. Training and
testing is done for both, the forward mapping

f: B → H, h � f b( ), (8)

and the inverse mapping as it is outlined in Figure 4

f−1: H → B, b � f−1 h( ), (9)
where b ∈ B ⊂ R2 and h ∈ H ⊂ R20. Here, B denotes the space of
hardening parameters and H the space of discretized hardening
curves.

The neural networks that learn the forwardmapping consist of
two hidden layers with 10 and 15 neurons and for learning the

inverse mapping they consist of two hidden layers with 15 and 10
neurons. In both cases, the mean-squared-error loss function
between true and predicted output quantity is applied and
optimized using the limited-memory BFGS optimizer with L2
regularization of λ = 0.0001. Furthermore, early stopping is
applied using a random subset of 10% of the training data for
validation. Both networks use ReLU activation functions. To
measure the performance of the forward models, the absolute
error between the predicted curveHpred and the true curveHtrue is
given by

ΔH � 1
20

∑ |Hpred −H true|. (10)

To measure the performance of the inverse models, the curves
are reconstructed using the predicted material model parameters
(which yields Hrecon) and compared with the true curves Htrue:

ΔH � 1
20

∑ |Hrecon −H true|. (11)

FIGURE 4 | Parameter identification problem. A data base of material model parameters and corresponding responses is set up (black dots and curves), which can be
used to train a neural network (NN) on the inversemapping. After training, the neural network is able to identify parameters for given hardening curves (reddashed line and cross).

FIGURE 5 | The sampled parameter space of the hardening model described in Eq. 7. 2,500 samples were generated using Latin hypercube design (A), the
knowledge-based sampling approach following Morand and Helm (2019) (B) and query-by-committee (C).
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Training and test runs were performed five times with
different random validation splits. The averaged results are
listed in Table 1. The neural network trained on the data set
generated by query-by-committee reaches a similar performance
than the neural network trained on the data generated by the
knowledge-based approach when tested on the Latin hypercube
samples. When tested on each other, the averaged mean is rather
low for both approaches. However, one can observe that for
modeling the forward relation, the neural network trained with
the data generated by query-by-committee is slightly better than
the one trained with the data generated by the knowledge-based
sampling approach and vice versa for the inverse relation.
Comparing both neural networks with the neural network
trained on the data generated via Latin hypercube design, the
latter is outperformed for every test set. The generated data is
available online, see Morand et al. (2021).

3.3 Artificial Rolling Texture Generation
As a third example, we analyze the problem of generating
microstructure-property data, which is used to learn a forward
mapping as a fundamental basis to solve materials design
problems in Iraki et al. (2021). The specific materials design
problem tackled therein is the identification of crystallographic
textures for given desired material properties of DC04 steel
sheets, see Figure 6 for an illustration. Basically, this is
achieved by using a machine learning-based model that
approximates the mapping from crystallographic textures to
properties combined with an optimization approach.
Alternatively, the identification problem can be solved by

learning the inverse mapping. In general, solving inverse
problems is challenging due to ill-posedness. In this example,
the solution of the inverse problem is not guaranteed to exist, and
if it exists, it is not guaranteed to be unique (in contrast to the
previous example). Here, the uniqueness and existence of a
solution is highly depending on the choice of desired
properties. If the definition of desired properties is very
specific, then it is rather unlikely that a microstructure leading
to exact these properties exists. One way to tackle this problem is
by defining target property windows (desired properties with
tolerances), as is done in Iraki et al. (2021) for example.

In Iraki et al. (2021), texture generation is done based on the
rolling texture description model described in Delannay et al.
(1999). In this study, the parameter ranges for the texture
description model are defined as is described in Iraki et al.
(2021). To calculate the properties of interest, a crystal
plasticity model is used. The model is of Taylor-type and is
set up following Kalidindi et al. (1992). For a detailed description
of the Taylor-type crystal plasticity model, see Dornheim et al.
(2022) and Iraki et al. (2021). Besides, instead of using a Taylor-
type crystal plasticity model, also computationally expensive full-
field models can be applied here. For the purpose of our study, we
use the Taylor-type crystal plasticity model to determine the
Young’s moduli Eφ and the Lankford coefficients (r-values) rφ,
both at 0, 45 and 90° to rolling direction for given crystallographic
textures. In the following, the generated properties are
represented by Pi ∈ R6. The material model parameters are
chosen to represent DC04 steel (cf. Iraki et al., 2021).
However, using the elastic constants for ferrite from Eghtesad
and Knezevic, (2020), the Young’s modulus is slightly
overestimated by our simulations.

In the following, we compare the generation of
5,000 texture-property data pairs using Latin hypercube
design and query-by-committee. As r-values of rolled DC04
sheets typically do not exceed values of 5.0, we additionally
apply the extension described in Section 2.2 to suppress
generating data in regions leading to r > 5.0 (the factor to
weight the soft constraint W in Eq. 5 is set to 100). For the
query-by-committee approach, a committee of five neural
networks is used with two hidden layers of 24 and 6
neurons. Every committee member is trained on a random
subset of 80% of the actual data. The mean-squared-error loss
function between true and predicted properties is applied and
the limited-memory BFGS optimizer is used. Early stopping
and L2-regularization with λ = 0.1 are applied. The activation
function used is ReLU. For an initial data set, 100 texture-
property data points are sampled randomly.

TABLE 1 | Averaged mean ΔH for the neural networks that are trained and evaluated using the three data sets. The data sets are generated using LHD (Latin hypercube
design), KBS (the knowledge-based sampling approach), and QBC (query-by-committee). The best result for each test set is marked in bold.

Av. mean
ΔH (MPa)

Forward model trained with Inverse model trained with

LHD set KBS set QBC set LHD set KBS set QBC set

Tested on LHD set — 3.70 3.46 — 2.60 3.06
Tested on KBS set 7.92 — 4.07 9.10 — 6.10
Tested on QBC set 7.88 4.77 — 9.77 5.66 —

TABLE 2 | Average mean ΔE and Δr for the neural networks trained and evaluated
on the three generated data sets: LHD (Latin hypercube design), QBC (query-
by-committee) and QBC+ (query-by-committee with extension). The best result
for each test set is marked in bold.

Av. mean ΔE (MPa) Forward model trained with

LHD set QBC set QBC+ set

Tested on LHD set — 125 133
Tested on QBC set 240 — 207
Tested on QBC + set 183 157 —

Av. mean Δr (−) Forward model trained with

LHD set QBC set QBC+ set

Tested on LHD set — 0.035 0.037
Tested on QBC set 0.081 — 0.062
Tested on QBC + set 0.055 0.045 —
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The obtained data sets are depicted as projections in property
space in Figure 7 (E0, E90) and Figure 8 (r45, r0). The point cloud
generated by Latin hypercube design comprises a much smaller
region in property space compared to the ones generated by
query-by-committee. Furthermore, the point cloud is
concentrated at its center. Such a strong concentration cannot
be observed in the point clouds generated by query-by-
committee. Also the minimum and maximum values in both,
E and r, that are found by the active learning strategies are more
extreme than by using Latin hypercube design. However, the
original query-by-committee sampling approach leads to
unrealistic high r-values, cf. Figure 8B. In contrast, Figure 8C

shows that this effect can be minimized by applying the extension
to query-by-committee presented in Section 2.2. The applied
region filter (isolation forest) limits the active learning search
space in such a way that textures with high r-values are excluded.
Therefore, the amount of textures in the data set that lead to
unrealistic high r-values decreases dramatically compared to the
data set generated without the query-by-committee extension.
The latter includes 141 data points with r > 5, while the former
includes only 11. The generated data is available online, see
Morand et al. (2021).

To evaluate the effect of the applied sampling strategies on
supervised learning models, we train and test feedforward neural

FIGURE 6 | Illustration of the texture identification problem. The space of rolling textures is described by dj and the space of properties by pj.

FIGURE 7 | 5,000 sampled texture-property data points projected into property space (E0, E90). Data points are generated on the basis of Latin hypercube design
(A), query-by-committee (B) and extended query-by-committee with r ≤ 5.0 (C).

FIGURE 8 | 5,000 sampled texture-property data points projected into property space (r45, r0). The data points are generated on the basis of Latin hypercube
design (A), query-by-committee (B) and extended query-by-committee with r ≤ 5.0 (C).
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networks on the generated data. For training and testing, we
exclude the data points with r > 5.0. In contrast to Section 3.2,
only the forward mapping is modeled, as the inverse relation
cannot be learned directly using feedforward neural networks due
to its non-uniqueness. For the forward mapping, first, we
approximate the orientation distribution function of the
generated textures via symmetric generalized spherical
harmonics of degree 12 Bunge (2013). The constants Di ∈ R33

of this series expansion are used as texture representation (cf.
Kalidindi et al., 2004). The feedforward neural networks are
supposed to learn the mapping from texture space D to
property space P

f: D → P, p � f d( ), (12)
where p ∈ P ⊂ R6 and d ∈ D ⊂ R33. Each neural network
consists of two hidden layers with 30 and 10 neurons with
ReLU activation functions. The mean-squared-error loss
function is applied and optimized using the limited memory
BFGS optimizer. L2 regularization with λ = 0.0001 is applied as
well as early stopping using a subset of 10% of the training data
for validation.

The performance measure for the neural networks used in this
example is the mean absolute error for the Young’s moduli

ΔE � 1
3

|E0,pred − E0,true| + |E45,pred − E45,true| + |E90,pred − E90,true|( )

(13)
and for the r-values

Δr � 1
3

|r0,pred − r0,true| + |r45,pred − r45,true| + |r90,pred − r90,true|( ).

(14)
Table 2 and 3 show the results of the trained neural networks,

when tested on the generated data. Training and test runs were
performed five times with different random validation splits. The
mean and maximum errors were averaged over the data set. Both
tables show that the neural networks trained with data generated
by query-by-committee outperform the neural networks trained
with data generated on the basis of Latin hypercube design.
However, the differences in the averaged mean errors are not

significantly high. In contrast, regarding the averaged maximum
errors, the differences are much higher. When tested on the data
set generated by Latin hypercube design, both neural networks
that are trained with data generated by query-by-committee
achieve similar results.

4 DISCUSSION

In Section 3.1, an extreme case is studied to emphasize the
advantage of using active learning for the generation of
microstructure-property data sets. The peak of the
approximated delta function is chosen to be quite steep such
that the probability of sampling data points on it by random
sampling is rather small. As a result, random sampling covers the
peak region of the delta function insufficiently. In contrast, by
using query-by-committee, the peak region is explored
extensively. As pointed out, even the maximum value in the
sampled data set is very close to the maximum value of the
approximated delta function. If we imagine the delta function
expressing a relation between microstructures and properties, we
can easily see the advantage for a designer to gain knowledge
about the property peak in order to be able to improve the
performance of a workpiece.

In Section 3.2, the query-by-committee approach is compared
to a classical Latin hypercube design approach and a knowledge-
based sampling approach for generating data of hardening model
parameters and responses. Originally, the knowledge-based
approach was developed in Morand and Helm (2019) to
optimally sample the hardening model’s parameter space by
incorporating knowledge about the model’s behavior. The
results show that the query-by-committee approach is able to
find a similar parameter distribution, but without manually
introducing any expert knowledge. The data generated by
query-by-committee is equally appropriate for training
forward and inverse neural network models, which all
outperform the models trained on the data generated by the
baseline Latin hypercube design approach. All in all, the results
show that by using query-by-committee, sampling can be
performed automatically in a goal-directed way without
additionally introducing expert knowledge.

Also, the results from Section 3.3 show that the query-by-
committee approach is more suitable to sample microstructure-
property spaces than classical space-filling sampling strategies. In
this example, a space of artificial rolling textures is sampled aiming
to efficiently explore the space of corresponding properties. A
comparison of the spread of the generated properties point clouds
reveals with which additional possibilities a designer can be
equipped, when the design space is sampled via active learning.
However, the original query-by-committee approach explores the
texture space in regions that lead to unrealistic high properties. By
using the extension to membership query synthesis that is
presented in this paper, sampling in regions with unrealistic
high properties can be suppressed. In fact, still some data
points are generated in these regions, which are yet necessary
for the binary classifier (region filter) to be trained. Nevertheless,
compared to the classical query-by-committee approach, the

TABLE 3 | Average maximum ΔE and Δr for the neural networks trained and
evaluated on the three generated data sets: LHD (Latin hypercube design),
QBC (query-by-committee) and QBC+ (query-by-committee with extension). The
best result for each test set is marked in bold.

Av. max ΔE (MPa) Forward model trained with

LHD set QBC set QBC+ set

Tested on LHD set — 1,347 1,252
Tested on QBC set 2,684 — 1977
Tested on QBC + set 2,296 1,227 —

Av. max Δr (−) Forward model trained with

LHD set QBC set QBC+ set

Tested on LHD set — 0.345 0.388
Tested on QBC set 0.921 — 0.898
Tested on QBC + set 0.725 0.483 —
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amount of property data out of scope is much lower and sampling
concentrates on the predefined region of interest. Consequently,
when training a supervised learning model on the inverse relation
(predicting textures for given properties), more extreme properties
can be learned on the basis of data generated by query-by-
committee.

Such a positive effect can also be observed on learning the
forward relation. The neural networks trained on the data
generated by query-by-committee both outperform the model
trained with the data generated by Latin hypercube design.
However, no significant differences in the averaged mean
absolute error (shown in Table 2) can be seen. This is due to the
fact that most of the data points are located near the center of the
point cloud, which is where all the neural networks are quite
accurate. In contrast, the differences in the averaged maximum
errors are more significant. This is because the data sets sampled by
query-by-committee contains more extreme data points than the
data set sampled by Latin hypercube design. Furthermore, it can be
seen that the neural network trained on the data generated by the
extended query-by-committee approach performs worse than the
network trained with the data from the original approach. This is a
sign that the region filter limits the texture space too rigorously and
further adjustment is needed. However, the general concept of the
active learning extension is proven, as less samples were generated in
regions out of scope compared to the original approach.

5 SUMMARY AND OUTLOOK

The present paper shows that active learning can be used to efficiently
explore microstructure-property spaces. By using the active learning
approach query-by-committee, the focus of data generation is
automatically shifted to sparse regions and nonlinearities.
Subsequently, two main advantages of active learning in materials
design applications follow: 1) regions in microstructure space that
lead to extreme properties are explored extensively and 2) in contrast
to classical space-filling sampling strategies, active learning can be
used for goal-directed sampling, which is relevant for training direct
inverse machine learning models. Future work is, however, necessary
to investigate how the size of the committee, the fraction of the data
used to train the committee members and the complexity of these
affect sampling. Also it is necessary to benchmark the query-by-
committee approach to the Bayesian approaches, which are
mentioned in the introduction.

In general, a problem for active learning approaches arises,
when the input space bounds are not set adequately. Then,
regions in microstructure space are explored that lead to
properties out of scope. However, sampling in these regions

can be suppressed by using the extension presented in this
work. Still one drawback of using active learning remains: In
contrast to classical sampling strategies, active learning is time-
intensive, as in every active learning cycle one or more machine
learning models need to be trained and additionally an
optimization has to be performed. Yet, the results of the
present paper show that by using active learning, less data is
needed to sufficiently cover microstructure-property spaces than
it is the case for classical sampling strategies.

Therefore, regarding virtual materials design, the application of
active learning techniques is suitable when sample-efficiency plays
an important role. This is for example the case when data is
generated using time-intensive numerical simulations, like for
example on the bases of spatially resolved full-field
microstructures. Also, active learning can help setting up multi-
fidelity data bases by enriching less quality data with precisely
sampled high quality simulation data or experimental data.
Though, incorporating multi-fidelity data and experimental data
has not been studied in this work and is part of future research.
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