455 research outputs found

    Cool Customers in the Stellar Graveyard IV: Spitzer Search for Mid-IR excesses Around Five DAs

    Full text link
    Hydrogen atmosphere white dwarfs with metal lines, so-called DAZs, require external accretion of material to explain the presence of weak metal line absorption in their photospheres. The source of this material is currently unknown, but could come from the interstellar medium, unseen companions, or relic planetesimals from asteroid belt or Kuiper belt analogues. Accurate mid-infrared photometry of these white dwarfs provide additional information to solve the mystery of this accretion and to look for evidence of planetary systems that have survived post main sequence evolution. We present {\em Spitzer} IRAC photometry accurate to \sim3% for four DAZs and one DA with circumstellar absorption lines in the UV. We search for excesses due to unseen companions or circumstellar dust disks. We use {\em Hubble Space Telescope} NICMOS imaging of these white dwarfs to gauge the level of background contamination to our targets as well as rule out common proper motion companions to WD 1620-391. All of our targets show no excesses due to companions >>20 MJ_{J}, ruling out all but very low mass companions to these white dwarfs at all separations. No excesses due to circumstellar disks are observed, and we place limits on what types of disks may still be present.Comment: 18 pages, 8 figures, Accepted to A

    Detection of Weak Circumstellar Gas around the DAZ White Dwarf WD 1124-293: Evidence for the Accretion of Multiple Asteroids

    Full text link
    Single metal polluted white dwarfs with no dusty disks are believed to be actively accreting metals from a circumstellar disk of gas caused by the destruction of asteroids perturbed by planetary systems. We report, for the first time, the detection of circumstellar Ca~II gas in absorption around the DAZ WD~1124-293, which lacks an infrared excess. We constrain the gas to >>7 RWDR_{\rm WD} and <<32000~AU, and estimate it to be at \sim54~RWD_{\rm WD}, well within WD~1124-293's tidal disruption radius. This detection is based on several epochs of spectroscopy around the Ca~II H and K lines (λ\lambda=3968\AA, 3933\AA) with the MIKE spectrograph on the Magellan/Clay Telescope at Las Campanas Observatory. We confirm the circumstellar nature of the gas by observing nearby sightlines and finding no evidence for gas from the local interstellar medium. Through archival data we have measured the equivalent width of the two photospheric Ca lines over a period of 11 years. We see << 5-7\% epoch-to-epoch variation in equivalent widths over this time period, and no evidence for long term trends. The presence of a circumstellar gas implies a near edge-on inclination to the system, thus we place limits to short period transiting planetary companions with R >> R_{\rm \oplus} using the WASP survey. The presence of gas in orbit around WD~1124-293 implies that most DAZs could harbor planetary systems. Since 25-30\% of white dwarfs show metal line absorption, the dynamical process for perturbing small bodies must be robust.Comment: 31 pages with 9 figures; accepted to Ap

    Distribution, expression and long range mapping of legiolysin gene (lly) specific DNA sequences in Legionellae

    Get PDF
    The legiolysin gene (lly) cloned from Legionella pneumophila Philadelphia 1 confers the phenotypes of hemolysis and browning of the culture medium. An internal Uy-specific DNA probe was used in Southern hybridizations for the detection of Uy-specific DNA in the genomes of legioneUae and other gram-negative pathogenic bacteria. Under conditi9ns of high stringency, tlie Uy DNA probe specifically reacted with DNA fragments fr9m L. pneumophiüz isolates; by reducing stringency, hybridization was also observed for all other Legionella strains tested. No hybridization occurred with DNAs isolated from bact~ria of other genera. The Uy genewas mapped by pulsed-field gel electrophoresis to the respective genomic Notl fragments of Legionelltz isolates. By using antilegiolysin monospecific polyclonal antibodies in Western blots (immunoblots), Lly proteins could be detected only in L. pneumophila isolates

    NLTT5306B: an inflated, weakly irradiated brown dwarf

    Get PDF
    We present Spitzer observations at 3.6 and 4.5 µm and a near-infrared IRTF SpeX spectrum of the irradiated brown dwarf NLTT5306B. We determine that the brown dwarf has a spectral type of L5 and is likely inflated, despite the low effective temperature of the white dwarf primary star. We calculate brightness temperatures in the Spitzer wavebands for both the model radius, and Roche Lobe radius of the brown dwarf, and conclude that there is very little day–night side temperature difference. We discuss various mechanisms by which NLTT5306B may be inflated, and determine that while low-mass brown dwarfs (M < 35 M_(Jup)) are easily inflated by irradiation from their host star, very few higher mass brown dwarfs are inflated. The higher mass brown dwarfs that are inflated may be inflated by magnetic interactions or may have thicker clouds

    First High Contrast Imaging Using a Gaussian Aperture Pupil Mask

    Full text link
    Placing a pupil mask with a gaussian aperture into the optical train of current telescopes represents a way to attain high contrast imaging that potentially improves contrast by orders of magnitude compared to current techniques. We present here the first observations ever using a gaussian aperture pupil mask (GAPM) on the Penn State near-IR Imager and Spectrograph (PIRIS) at the Mt. Wilson 100^{\prime\prime} telescope. Two nearby stars were observed, ϵ\epsilon Eridani and μ\mu Her A. A faint companion was detected around μ\mu Her A, confirming it as a proper motion companion. Furthermore, the observed H and K magnitudes of the companion were used to constrain its nature. No companions or faint structure were observed for ϵ\epsilon Eridani. We found that our observations with the GAPM achieved contrast levels similar to our coronographic images, without blocking light from the central star. The mask's performance also nearly reached sensitivities reported for other ground based adaptive optics coronographs and deep HST images, but did not reach theoretically predicted contrast levels. We outline ways that could improve the performance of the GAPM by an order of magnitude or more.Comment: 8 pages, 4 figures, accepted by ApJ letter

    Orbital evolution under action of fast interstellar gas flow

    Full text link
    Orbital evolution of an interplanetary dust particle under action of an interstellar gas flow is investigated. Secular time derivatives of the particle orbital elements, for arbitrary orbit orientation, are presented. An important result concerns secular evolution of semi-major axis. Secular semi-major axis of the particle on a bound orbit decreases under the action of fast interstellar gas flow. Possible types of evolution of other Keplerian orbital elements are discussed. The paper compares influences of the Poynting-Robertson effect, the radial solar wind and the interstellar gas flow on dynamics of the dust particle in outer planetary region of the Solar System and beyond it, up to 100 AU. Evolution of putative dust ring in the zone of the Edgeworth-Kuiper belt is studied. Also non-radial solar wind and gravitational effect of major planets may play an important role. Low inclination orbits of micron-sized dust particles in the belt are not stable due to fast increase of eccentricity caused by the interstellar gas flow and subsequent planetary perturbations - the increase of eccentricity leads to planet crossing orbits of the particles. Gravitational and non-gravitational effects are treated in a way which fully respects physics. As a consequence, some of the published results turned out to be incorrect. Moreover, the paper treats the problem in a more general way than it has been presented up to now. The influence of the fast interstellar neutral gas flow might not be ignored in modeling of evolution of dust particles beyond planets.Comment: 12 pages, 7 figure

    Asymmetric Heating of the HR 4796A Dust Ring Due to Pericenter Glow

    Full text link
    We have obtained new resolved images of the well-studied HR 4796A dust ring at 18 and 25 microns with the 8-meter Gemini telescopes. These images confirm the previously observed spatial extent seen in mid-IR, near-IR, and optical images of the source. We detect brightness and temperature asymmetries such that dust on the NE side is both brighter and warmer than dust in the SW. We show that models of so-called pericenter glow account for these asymmetries, thus both confirming and extending our previous analyses. In this scenario, the center of the dust ring is offset from the star due to gravitational perturbations of a body with an eccentric orbit that has induced a forced eccentricity on the dust particle orbits. Models with 2-micron silicate dust particles and a forced eccentricity of 0.06 simultaneously fit the observations at both wavelengths. We also show that parameters used to characterize the thermal-emission properties of the disk can also account for the disk asymmetry observed in shorter-wavelength scattered-light images.Comment: accepted for publication in A&A; 7 pages, 4 figure

    PHL 5038AB: Is the brown dwarf causing pollution of its white dwarf host star?

    Get PDF
    We present new results on PHL 5038AB, a widely separated binary system composed of a white dwarf and a brown dwarf, refining the white and brown dwarf parameters and determining the binary separation to be AU. New spectra of the white dwarf show calcium absorption lines suggesting the hydrogen-rich atmosphere is weakly polluted, inferring the presence of planetesimals in the system, which we determine are in an S-type orbit around the white dwarf in orbits closer than 17-32 AU. We do not detect any infrared excess that would indicate the presence of a disc, suggesting all dust present has either been totally accreted or is optically thin. In this system, we suggest the metal pollution in the white dwarf atmosphere can be directly attributed to the presence of the brown dwarf companion disrupting the orbits of planetesimals within the system
    corecore