71 research outputs found

    Reduction of Power Losses in the Distribution System by Controlling Tap Changing Transformer using the PSO Algorithm

    Get PDF
    Energy is an essential commodity for everyone, with electrical energy being the most preferred form. Unfortunately, non-renewable energy resources are gradually depleting, and renewable energy sources take several years to establish. To mitigate this problem, technology has shifted from non-renewable energy sources to electrical devices and machines, including household appliances like washing machines and air conditioners. However, the generation of electricity is still inadequate to meet the growing demand. This leads to two critical issues: Excessive power loss and inadequate voltage stability, making it difficult for power distribution companies to ensure a consistent and reliable power supply. The objective of this study is to tackle the issue of reduction and minimization of power dissipation By employing the PSO technique, adjusting the transformer tap settings. The proposed approach uses the 14-bus system as a reference and calculates losses for this system using the backward-forward sweeping technique

    A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage

    Get PDF
    Carbon Capture, Utilisation and Storage (CCUS) can reduce greenhouse gas emissions for a range of technologies which capture CO2 from a variety of sources and transport it to permanent storage locations such as depleted oil fields or saline aquifers or supply it for use. CO2 transport is the intermediate step in the CCUS chain and can use pipeline systems or sea carriers depending on the geographical location and the size of the emitter. In this paper, CO2 shipping is critically reviewed in order to explore its techno-economic feasibility in comparison to other transportation options. This review provides an overview of CO2 shipping for CCUS and scrutinise its potential role for global CO2 transport. It also provides insights into the technological advances in marine carrier CO2 transportation for CCUS, including preparation for shipping, and in addition investigates existing experience and discusses relevant transport properties and optimum conditions. Thus far, liquefied CO2 transportation by ship has been mainly used in the food and brewery industries for capacities varying between 800 m3 and 1000 m3. However, CCUS requires much greater capacities and only limited work is available on the large-scale transportation needs for the marine environment. Despite most literature suggesting conditions near the triple-point, in-depth analysis shows optimal transport conditions to be case sensitive and related to project variables. Ship-based transport of CO2 is a better option to decarbonise dislocated emitters over long distances and for relatively smaller quantities in comparison to offshore pipeline, as pipelines require a continuous flow of compressed gas and have a high cost-dependency on distance. Finally, this work explores the potential environmental footprint of marine chains, with particular reference to the energy implications and emissions from ships and their management. A careful scrutiny of potential future developments highlights the fact, that despite some existing challenges, implementation of CO2 shipping is crucial to support CCUS both in the UK and worldwid

    Breeding for Resistance to Heliothisl Helicoverpa: Effectiveness and Limitations

    Get PDF
    Helicoverpa armigera (Hiibner) has been identified as an important pest problem globally. Only a few insect pests cause as much loss to vegetative and reproductive plant parts in a range of tropical and subtropical crops around the world as Helicoverpa. Its geographical range of distribution extends to all the continents, but the damage in the semi-arid tropics is enormous. Helicoverpa armigera has been recorded from over 20 crops and 180 wild hosts in India. Cyclic appearance of H. armigera on cotton and pulses has rendered the mitigation of this pest to be quite difficult............

    Breeding for resistance to Heliothis/Helicoverpa: effectiveness and limitations

    Get PDF
    The mechanisms of resistance to Helicoverpa armigera, progress in breeding for resistance to H. armigera, and the effectiveness and limitations of breeding for resistance to H. armigera in chickpea, pigeon pea and cotton are discussed in this chapter. Future breeding strategies for increased resistance to H. armigera are presented

    Associations of FTO and MC4R Variants with Obesity Traits in Indians and the Role of Rural/Urban Environment as a Possible Effect Modifier

    Get PDF
    Few studies have investigated the association between genetic variation and obesity traits in Indian populations or the role of environmental factors as modifiers of these relationships. In the context of rapid urbanisation, resulting in significant lifestyle changes, understanding the aetiology of obesity is important. We investigated associations of FTO and MC4R variants with obesity traits in 3390 sibling pairs from four Indian cities, most of whom were discordant for current dwelling (rural or urban). The FTO variant rs9939609 predicted increased weight (0.09 Z-scores, 95% CI: 0.03, 0.15) and BMI (0.08 Z-scores, 95% CI: 0.02, 0.14). The MC4R variant rs17782313 was weakly associated with weight and hip circumference (P < .05). There was some indication that the association between FTO and weight was stronger in urban than that in rural dwellers (P for interaction = .03), but no evidence for effect modification by diet or physical activity. Further studies are needed to investigate ways in which urban environment may modify genetic risk of obesity

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit

    A Meta-analysis of Gene Expression Signatures of Blood Pressure and Hypertension

    Get PDF
    Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p&lt;0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%–9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension

    Antixenosis and antibiosis mechanisms of resistance to pod borer, Helicoverpa armigera in wild relatives of chickpea, Cicer arietinum

    Get PDF
    The noctuid pod borer, Helicoverpa armigera is one of the most damaging pests of chickpea, Cicer arietinum. The levels of resistance to H. armigera in the cultivated chickpea are low to moderate, but the wild relatives of chickpea have exhibited high levels of resistance to this pest. To develop insect-resistant cultivars with durable resistance, it is important to understand the contribution of different components of resistance, and therefore, we studied antixenosis and antibiosis mechanisms of resistance to H. armigera in a diverse array of wild relatives of chickpea. The genotypes IG 70012, PI 599046, IG 70022, PI 599066, IG 70006, IG 70018 (C. bijugum), ICC 506EB, ICCL 86111 (cultivated chickpea), IG 72933, IG 72953 (C. reticulatum), IG 69979 (C. cuneatum) and IG 599076 (C. chrossanicum) exhibited non preference for oviposition by the females of H. armigera under multi-choice, dual-choice and no-choice cage conditions. Based on detached leaf assay, the genotypes IG 70012, IG 70022, IG 70018, IG 70006, PI 599046, PI 599066 (C. bijugum), IG 69979 (C. cuneatum), PI 568217, PI 599077 (C. judaicum) and ICCW 17148 (C. microphyllum) suffered significantly lower leaf damage, and lower larval weights indicating high levels of antibiosis than on the cultivated chickpea. Glandular and non-glandular trichomes showed negative correlation with oviposition, while the glandular trichomes showed a significant and negative correlation with leaf damage rating. Density of non-glandular trichomes was negatively correlated with larval survival. High performance liquid chromatography (HPLC) fingerprints of leaf surface exudates showed a negative correlation of oxalic acid with oviposition, but positive correlation with malic acid. Both oxalic acid and malic acid showed a significant negative correlation with larval survival. The wild relatives exhibiting low preference for oviposition and high levels of antibiosis can be used as sources of resistance to increase the levels and diversify the basis of resistance to H. armigera in cultivated chickpea

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
    corecore