3,306 research outputs found

    A transfer function approach for predicting rare cell capture microdevice performance

    Get PDF
    Rare cells have the potential to improve our understanding of biological systems and the treatment of a variety of diseases; each of those applications requires a different balance of throughput, capture efficiency, and sample purity. Those challenges, coupled with the limited availability of patient samples and the costs of repeated design iterations, motivate the need for a robust set of engineering tools to optimize application-specific geometries. Here, we present a transfer function approach for predicting rare cell capture in microfluidic obstacle arrays. Existing computational fluid dynamics (CFD) tools are limited to simulating a subset of these arrays, owing to computational costs; a transfer function leverages the deterministic nature of cell transport in these arrays, extending limited CFD simulations into larger, more complicated geometries. We show that the transfer function approximation matches a full CFD simulation within 1.34 %, at a 74-fold reduction in computational cost. Taking advantage of these computational savings, we apply the transfer function simulations to simulate reversing array geometries that generate a “notch filter” effect, reducing the collision frequency of cells outside of a specified diameter range. We adapt the transfer function to study the effect of off-design boundary conditions (such as a clogged inlet in a microdevice) on overall performance. Finally, we have validated the transfer function’s predictions for lateral displacement within the array using particle tracking and polystyrene beads in a microdevice.National Cancer Institute (U.S.). Physical Sciences-Oncology Center (Cornell Center on the Microenvironment and Metastasis. Award U54CA143876

    Automorphisms of linear automata

    Get PDF
    AbstractRelationships between the group, Aut(M), of automorphisms of a linear automaton M and the structure of M are determined. Linear automata in which Aut(M) is a group of translations are characterized in terms of the structure of the state space of M. Also, conditions are determined as to when Aut(M) contains only linear transformations

    The centralizer of a group automorphism

    Get PDF
    AbstractLet G be a finite group. The structure of the near-ring C(A) of identity preserving functions f: G → G, which commute with a given automorphism A of G, is investigated. The results are then applied to the case in which G is a finite vector space and A is an invertible linear transformation

    Naming Game on Adaptive Weighted Networks

    Full text link
    We examine a naming game on an adaptive weighted network. A weight of connection for a given pair of agents depends on their communication success rate and determines the probability with which the agents communicate. In some cases, depending on the parameters of the model, the preference toward successfully communicating agents is basically negligible and the model behaves similarly to the naming game on a complete graph. In particular, it quickly reaches a single-language state, albeit some details of the dynamics are different from the complete-graph version. In some other cases, the preference toward successfully communicating agents becomes much more relevant and the model gets trapped in a multi-language regime. In this case gradual coarsening and extinction of languages lead to the emergence of a dominant language, albeit with some other languages still being present. A comparison of distribution of languages in our model and in the human population is discussed.Comment: 22 pages, accepted in Artificial Lif

    Empty spaces and the value of symbols: Estonia's 'war of monuments' from another angle

    Get PDF
    Taking as its point of departure the recent heightened discussion surrounding publicly sited monuments in Estonia, this article investigates the issue from the perspective of the country's eastern border city of Narva, focusing especially upon the restoration in 2000 of a 'Swedish Lion' monument to mark the 300th anniversary of Sweden's victory over Russia at the first Battle of Narva. This commemoration is characterised here as a successful local negotiation of a potentially divisive past, as are subsequent commemorations of the Russian conquest of Narva in 1704. A recent proposal to erect a statue of Peter the Great in the city, however, briefly threatened to open a new front in Estonia's ongoing 'war of monuments'. Through a discussion of these episodes, the article seeks to link the Narva case to broader conceptual issues of identity politics, nationalism and post-communist transition

    What Can We Learn From Calf/Cow Ratios?

    Get PDF
    Trends in population growth can be monitored with data for key vital rates without requiring knowledge of abundance. Adult female survival has the highest elasticity for ungulate population dynamics, but the more variable recruitment rates can be better predictors of local variation in growth rates. Recruitment is often monitored using young adult age ratios, which are difficult to reliably interpret given the contribution of multiple vital rates to annual ratios. We show how concurrent monitoring of adult female survival and age ratios allows both retrospective estimation of empirical population growth rates and the decomposition of recruitment-specific vital rates. We demonstrate the estimation of recruitment and population growth rates for one woodland caribou population using these methods, including elasticity and life-stage simulation analysis of the relative contribution of adult female survival and recruitment rates to variation in population growth. We show, for this woodland caribou population, that adult survival and recruitment rates are nearly equivalent drivers of population growth rates. We recommend the concurrent monitoring of adult female survival to reliably interpret age ratios when managing caribou and other ungulates

    The Smith Cloud: high-velocity accretion and dark-matter confinement

    Full text link
    The Smith Cloud is a massive system of metal-poor neutral and ionized gas M_gas >= 2x10^6 M_sun) that is presently moving at high velocity (V_GSR ~300 km s^-1) with respect to the Galaxy at a distance of 12 kpc from the Sun. The kinematics of the cloud's cometary tail indicates that the gas is in the process of accretion onto the Galaxy, as first discussed by Lockman et al. (2008). Here, we re-investigate the cloud's orbit by considering the possibility that the cloud is confined by a dark matter halo. This is required for the cloud to survive its passage through the Galactic corona. We consider three possible models for the dark matter halo (NFW, Einasto, Burkert) including the effects of tidal disruption and ram-pressure stripping during the cloud's infall onto and passage through the Galactic disk. For the NFW and Einasto dark-matter models, we are able to determine reasonable initial conditions for the Smith Cloud, although this is only marginally possible with the Burkert model. For all three models, the progenitor had an initial (gas+dark matter) mass that was an order of magnitude higher than inferred today. In agreement with Lockman et al. (2008), the cloud appears to have punched through the disk ~70 Myr ago. For our most successful models, the baryon to dark matter ratio is fairly constant during an orbital period but drops by a factor of 2-5 after transiting the disk. The cloud appears to have only marginally survived its transit, and is unlikely to retain its integrity during the next transit ~30 Myr from now.Comment: 9 pages, 7 figures. ApJ, accepte

    The significance of 'the visit' in an English category-B prison: Views from prisoners, prisoners' families and prison staff

    Get PDF
    A number of claims have been made regarding the importance of prisoners staying in touch with their family through prison visits, firstly from a humanitarian perspective of enabling family members to see each other, but also regarding the impact of maintaining family ties for successful rehabilitation, reintegration into society and reduced re-offending. This growing evidence base has resulted in increased support by the Prison Service for encouraging the family unit to remain intact during a prisoner’s incarceration. Despite its importance however, there has been a distinct lack of research examining the dynamics of families visiting relatives in prison. This paper explores perceptions of the same event – the visit – from the families’, prisoners’ and prison staffs' viewpoints in a category-B local prison in England. Qualitative data was collected with 30 prisoners’ families, 16 prisoners and 14 prison staff, as part of a broader evaluation of the visitors’ centre. The findings suggest that the three parties frame their perspective of visiting very differently. Prisoners’ families often see visits as an emotional minefield fraught with practical difficulties. Prisoners can view the visit as the highlight of their time in prison and often have many complaints about how visits are handled. Finally, prison staff see visits as potential security breaches and a major organisational operation. The paper addresses the current gap in our understanding of the prison visit and has implications for the Prison Service and wider social policy

    Microfluidic devices for terahertz spectroscopy of biomolecules

    Get PDF
    We demonstrate microfluidic devices for terahertz spectroscopy of biomolecules in aqueous solutions. The devices are fabricated out of a plastic material that is both mechanically rigid and optically transparent with near-zero dispersion in the terahertz frequency range. Using a low-power terahertz time-domain spectrometer, we experimentally measure the absorption spectra of the vibrational modes of bovine serum albumin from 0.5–2.5 THz and find good agreement with previously reported data obtained using large-volume solutions and a high-power free-electron laser. Our results demonstrate the feasibility of performing high sensitivity terahertz spectroscopy of biomolecules in aqueous solutions with detectable molecular quantities as small as 10 picomoles using microfluidic devices
    • 

    corecore