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Relationships between the group, Aut(M), of automorphisms of a linear automaton M  
and the structure of M  are determined. Linear automata in which Aut(M) is a group of 
translations are characterized in terms of the structure of the state space of M. Also, 
conditions are determined as to when Aut(M) contains only linear transformations. 

I. INTRODUCTION 

In this paper we continue our investigation of the relationships between the structural 
properties of linear automata and the morphism of these automata. In particular, we 
consider here relationships between the structure of the state space of a linear automaton, 
M, and the structure of the group of automorphisms of M. For references to previous 
investigations of morphisms of automata we refer the reader to the references in [6]. 

In this paper we deal exclusively with linear automata. To fix our notation, recall that 
an automaton M = (V, .Z, S) with state set V, input set 2 and transition function 6: 
V x Z-+ V is linear if there is a finite field F such that I’ = Fn, Z = Fm, and matrices 
A and B over F such that 6(v, u) = Av + Ba, v E I/, u E Z. We denote a linear automaton 
M by the 5-tuple M E (V, Z:, A, B, F) when we wish to call attention to the matrices 
A and B and the field F. For such a linear automaton M it is well-known that the subspace 
IV, of V generated by {AjBa 1 (I E Z, j = 0, 1,2,...) is the strongly connected component 
of the zero state ([2]). 

An endomorphism of a linear automaton M = (V, Z, A, B, F) is a functionf: I/ + V 
such that f(Av + Bo) = Af(v) + Ba, (v, u) E I’ x 2. Under function composition 
the set End(M) of endomorphisms of M is a semigroup with identity I, where I: V-t V 
is the identity map. As in [6] we have found it useful to consider the set T, = (f: V -+ V 1 
f(Av + Ba) = Af(v), (v, u) E V x Z} in investigating End (M). The relationship 
between T, and End (M) is thatfc To if and only if I + fe End (M). We note that any 
linear function commuting with A and having W,, in its null space belongs to To . 

The invertible elements of End(M) f orm a group, Aut(M), of automorphisms of M, 
and the set T(M) = (f: I’ ---f V /f(v) = v + a where Au = a} is a subgroup of Aut(M). 
We say that Aut(M) is trivial if Aut(M) = T(M) and we call the elements in T(M) 
translutio~s. In [6] it was shown that End(M) = T(M) if and only if V = W, . Consequently 
if V = W, , Aut(M) is trivial, but the converse is not true as will be shown in the sequel. 
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II. LINEAR AUTOMATA WITH TRIVIAL AUTOMORPHISM GROUP 

In this section we present a characterization of linear automata with trivialautomorphism 
group. Since End(M) = T(M) if M is strongly connected ([6]), we make the can following 
convention. 

Convention. For the remainder of the paper, I; f IV, . 
As a first step toward our characterization we consider linear automata over fields 

with more than two elements. We first state a lemma whose proof is trivial. 

LEMMA 1. Let M be a linear automaton and L a linear transformation in T,, . Then 
I + L E Aut(M) if and only if - 1 is not an eigenvalue of L. 

THEOREM 1. If M is a linear automaton over a field F # Z, and M is not strong& 
connected, then Aut(M) contains a non-identity linear transformation. 

Proof. Let S, be the set of linear transformations in T,, . Since W,, # V, we know 
from [6] that S, # (0). Under the operations of function addition and composition, 
S,, forms a ring. If S, is a nilpotent ring then for each L E S,, , I + L is invertible. Hence 
Aut(M) contains a non-identity linear transformation. If S,, is not nilpotent, then it 
contains an idempotent E # 0 [3, page 221. Since E2 = E, the only possible eigenvalues 
of E are 0 and 1. If char F # 2 then by the lemma, I + E E Aut(M). If char F = 2, 
then since F # Zs , there exists 01 EF, (Y $ (0, l}. Then olE in TO has 0 and OL as its only 
possible eigenvalues. Again by the lemma, I + aE E Aut(M). 

We now assume F = Z, for the remainder of this section. 
Let C be a nonzero element in S,, and let m,-(x) denote the minimal polynomial for C’, 

that is, 
me(x) = .x+(x + l)“* P~(x)~” ... &(Xp, 

a product of irreducibles. From the primary decomposition theorem [4, page 1801 

v = VI @ v, @ ... 0 v’r 

where I’, = Ker @I, V, = Ker(C + I)“s,..., I’, = Ker plc(C)“k. 
Suppose m,(x) has an irreducible factor p3(x) # J, x $- 1. Then define C: 1’4 I’ 

as follows: 
%3) 5 C(%), v3 (5 v3 3 

C;(q) = 0, wi E Vi , i # 3, 

and extend C linearly to all of V. Since each Vi is an A-invariant subspace, C E S,, . 
But m&4 = xP3( x 12~, > so C does not have - 1 = 1 as an eigenvalue, which means 
I+ C is a non-identity linear transformation in Aut(M). 

Using a similar argument we may now assume that every C in S, has a minimal poly- 
nomial of the form m&x) = X”I(X + 1)“2, n, , n2 E (0, l]. Hence S,, is a ring consisting 
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entirely of idempotents, i.e., S,, is a Boolean ring. It is well known that every finite Boolean 
ring has an identity element, so let E # 0 be the identity for S,, . We have 

v = v, @ v, 

where E(VI) = {0}, E(o.J = oa for each z1a E V, , and Vi , V, are A-invariant subspaces 
with IV, Z Vi . 

Let A, : V, - Vs be A restricted to V, . From the above we must have mAJx) = 
x(x + 1) or x or x + 1. 

Every element of S,, annihilates Vi . This implies that W, = Vi , for otherwise there 
exists, as in [6], a linear transformation C: Vi -+ Vi such that C commutes with A, = 
A / Vi and C(W,) = (0). Extending C to V by Z’(a,) = V, , ~1s E V, , gives an element 
in S,, for which C(V,) # (0). This is a contradiction. 

We thus have the following three situations: 

(i) V = IV, @ V, , m&9 = x(x + 1); 

(ii) V = W, @ V, , m&(x) = x; 

(iii) V = W, @ V, , 9nA,(X) = x + 1. 

Consider the first situation, V = W, @ V, @ V, where Av, = 0, v3 E V, , Av, = v, , 
v‘j E v, . 

Suppose dim V, > 1. Let C be a linear transformation on V, such that 1 is not an 
eigenvalue of C. Extend C to V by C(R~ + /3vs + yv,) = C&J,), w E W,, , v, E V, , 
v, E V, , Since CA = AC and C( W,) = {0}, then C E S,, . Moreover 1 is not an eigenvalue 
of C. Hence I + C E Aut(M). 

In a similar manner if dim V, > 1, Aut(M) contains a nontrivial linear transformation. 
Assume then that dim V, = 1, dim V, = 1, say V, = (0, vj} and V, = (0, v4}. 

Suppose Ker A n W,, # (O}, say k E Ker A - (0, v3}. Define C: V -+ V by C(v,,) = k, 
C(w) =o, WE w,, C(v,) = 0 and extend linearly to V. Then C E S,, and I + C is in 
Aut(M). Further if X n W, # {0}, w h ere x is the eigenspace of 1 for A, then let 0 # 
w,,EXnW,, and define C:V+V by C(V~)=W,-,, C(w)=O, WEUI,, C(vJ=O 
and extend linearly to V. Again C E S,, and I + C E Aut(M). 

Summarizing the above, we find that in the first situation if Aut(M) contains no non- 
trivial linear transformations then dim V, = 1, dim V, = 1, Ker A n W,, = {0} and 
X n W, = (0). 

The second and third situations are similar. For (ii), if Aut(M) contains no nontrivial 
linear transformations then V = W, @ V, , V, = (0, v,}, Av, = {0} and Ker A = V, . 
For (iii), if Aut(M) contains no nontrivial linear transformations then V = W, @ Vz , 
V, = (0, v,], Av, = v2 , g = V, . 

This establishes the necessity of the conditions in the following theorem. 

THEOREM 2. Let M = (V, Z, A, B, 2,) be a linear automaton with W,, # V. Then 
Aut(M) consists entirely of translations if and only if one of the following occurs: 
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(i) V = WO @  V3 @  V4 , V, = (0, v3}, V, = (0, vp} Ker A = I’, , X = 17~ 
(ii) V = W, @  V2 , V, = (0, v2}, Ker A = V, 

(iii) V = W, @  V, , V, = (0, vz}, X = V, , 

where g is the eigenspace of 1 for A. 

Proof. It remains to show that in the situations described the only automorphisms 
are translations. This is computational and omitted. 

In the second case of the above theorem we note that Aut(M) = {I} if 1 is not an 
eigenvalue of A. Combining this with a remark in [q we obtain the following charac- 
terization of linear automata in which the identity is the only automorphism. 

COROLLARY 1. Let M  = (V, z, A, B, F) be a linear automaton, 1 not an eigenvalue 
of A. Then Aut(M) = {I} if and only if M  is strongly connected or F = Z, , l’ = W, @  
Ker A, Ker iz := (0, vi}. 

Also from the above discussion we have the following. 

COROLLARY 2. Let M  = (V, 2, A, B, F) be a linear automaton. Then Aut(M) contains 
a non-identity linear transformation if and only if Aut(M) does not consist of translations. 

III. LINEAR TRANSFORMATIONS IN AuT(M) 

In this section we determine conditions under which Aut(M) contains only linear 
transformations. Throughout we assume W,, # V for the linear automaton M -z 
(V, 2, A, B, F). If 1 is an eigenvalue of A then Aut(M) contains nonidentity translations, 
so we may also assume that 1 is not an eigenvalue of A. 

Recall from [6] that a vector v E V is said to have Wa-order n if n is the least nonnegative 
integer such that A% E W, . If no such integer exists, v has WO-order co. Thus if v E W,, , 
v has W,-order 0. From this we have 

v= W,vSuI, 

a disjoint union where S = {v 1 v has finite nonzero W,,-order} and I = {v 1 v has infinite 
W,,-order}. Further, W,, u S is an A-invariant subspace of V which we denote by W, . 

For v E I, consider v, Av, A% ,..., A% ,.... Let 1 > 0 be minimal such that A% = A%fw 
for some k, 0 < k < I, and some w E W, = W, u S. We claim k = 0. For we have 
iZk(Al-k - I)v E W, and this implies (A’P~ - I)v E W, , contradicting the minimality 
of I unless R = 0. 

For z, E I we define the block of I determined by v to be the set V = u:ii (A% + W,) 
where E is minimal such that (A’ - I)v E W, . We note that I = %I U e2 U 1.. U em , 

a disjoint union of blocks. Moreover, any element of Vi generates Vi , that is, if vi E % ‘, 
then Vi = (Jj4.i’ (Ajvi + W,). Of course if S = c;, then each block is a connected 
component of M. 
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As a first step in our characterization of those linear automata having only linear 
automorphisms we show that if in the decomposition V = W, u I, I has more than one 
block then Aut(M) contains nonlinear functions. In this step there are several instances 
in which functions must be verified to be automorphisms. Since these functions arise 
in a similar manner, we present their definition in the following rather technical lemma, 
whose proof is omitted. 

LEMMA 2. Let V = W, U @I U **- U qrn , where 9?i is a block, m > 1, and vi is a 
generator of V, , i = 1,2 ,..., m. Let j be arbitrary but Jixed, 1 <j < m, and define a 
function f: V-+ V as follows: 

and 

f(v) = 0, V$Vji 
f (Vj) = Bj where di E%~ with (A’i - I) Gi = (A’5 - I) vj ; 

f (A"Vj + W) = Ak6j $ W, WE WI 3 k = 0, l,..., (4 - 1). 

Then 
f E Aut(M). 

We call an automorphism of the above type normal. We note that such an automorphism 
is completely determined as soon as the value fii = f (vj) is known. Thus, in order to 
define nonidentity normal automorphiims we need to find for some gj , elements vj # Zj 
in %j such that (AZ5 - I)+?, = (A’$ - 1)~~ . W e now show this is true for every block Vi 
in the decomposition of I. 

LEMMA 3. If I = Vlu ...u%‘~, m 3 1 then for each v E Vi, i = 1,2 ,..., m there 
exists 5 E c&i , d # v, such that (AZ< - I)6 = (Ali - I)v. 

Proof. We first observe that ) V, 1 > 1 W, 1 f or each i. Otherwise, if / %Yi / = 1 W, / 
then Zi = 1 which in turn implies that (x - 1) divides the minimal polynomial of A 
contradicting the fact that 1 is not an eigenvalue of A. 

Now, since (Azi - I)v, E W, , (AZ* - I)Vi C W, . Hence, reselecting vi if necessary 
we find Bi E Vi such that (AZ% - .I)+, = (Azi - I)vi . Since Vi = (JirO’ (A%, + W,) it 
is easily seen that for every v E Vi there is a d # v in %i such that (Azi - I)5 = (Ali - I)w. 
Since this is true for each i, the lemma follows. 

THEOREM 3. Let M = (V, Z, A, B, F) be a linear automaton such that V = W, u 
%‘i u ..* %7m . If m > 1, Aut(M) contains a nonlinear map. 

Proof. The result is established by constructing nonlinear normal automorphisms. 
Suppose, for some i, we have vi, vj E %Ji with Vi + VI = vi where vi E GF?~ , j # i. 

We definef: V -+ V as follows:f(v) = v, if v $ %‘, ; and for q = oi + vi E VYg , f (q) = 4 
where 6, is as given in Lemma3. Thus we obtain a normal automorphism f. But, f is not 
linear since f(q + ?I:) #f(Vi) +f(vi). 
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The alternative to the above is that II’, u Vi is a subgroup of (I’, +) for every i. 
Consider I’, = W, u V, u V, . But then Vi cannot be a group since otherwise 

VI = (w, u VI) u (Wl u U,), 

a union of two proper subgroups, which is impossible. Thus there exist vectors vi E %?r , 
vu2 E ‘Zz such that vi + vu2 E 97j , j # { 1, 2). Define the normal automorphismf as follows: 

f(X) = X if X # Vj 

f(vj) = dj where vj = v1 + V~ . 

Then f is not linear sincef(v, + vs) #f(s) + f(vJ. 
We turn now to the situation in which there is at most one block in I. Of course if 

S = @  there must be such a block since V # W,, . Our next step is to investigate this 
case. 

THEOREM 4. Let M = (V, Z, A, B, F) be a linear automaton such that V = W,, u 97, . 
Then Aut(M) contains a nonlinear automorphism if and c&y ;f End(M) contains a nonlinear 
endomorphism. 

Proof. Suppose every automorphism is linear. Then as in [6], a generator vi can be 
chosen for %r with the property that A”v, = vi for some integer m > I. Moreover 
since v, has this invertibility property, for any f in End(M), f (A%, + w) = Asf (q) f w, 
WE w,. 

If for f E End(M), f (vr) E Vr , say f (vi) = Ab, + wr , then f is onto. For f (w) = w, 
w E W, and if A8vl + SE %r then 

f (A%, + 3 - AS-iw,) = As-if(q) + w - As-iwl =z iz531 + a. 

Hence f E Aut(M) and consequently f is linear. (Note that if, in the above, s < i then 
ASvi + w = As+k~vl + w for all integers K, k > 0. Hence we may assume s > i.) 

It remains to consider those f E End(M) with f (vi) = wi E W, . If g E End(M) is linear 
theng+f--=(g--+f---)+IEEnd(M)and(g+f--)zr,=g(v~)+f(v,)- 
VI = g(q) + WI - Vl * If g(q) # Vl + w for some w E W, then (g + f - I)v, E 5~7~ 
which means g + f - I is an automorphism and therefore linear. Hence f is linear. 

So we may assume every automorphism of M has the property f (vJ = v1 + w for 
somewE W,. 

Let p(x) E F[x] b e minimal such that p(A)v, E W, . We have from [6], 

and 

f E End(M) if and only if (Al1 - I)f(v,) = (A’1 - l)vl 

f is linear if and only if p(A) f (vi) = p(A)v, . 
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Since every f E End(M) with the property that f (wl) = r~r + w is an automorphism 
and hence linear, then 

(A’1 - I) f (q) = (A5 - I)v, 
(A5 - I)(w, + w) = (AZ1 - I)a, 

(A5 - I)w = 0 
and 

P(A) f (4 = P(&Jl 
p(A)w = 0. 

The above steps are reversible so 

(A% - I)w = 0 if and only if p(A)w = 0. 

Hence in W,, we have Ker(A’1 - I) = Kerp(A). Now assume f E End(M) is not an 
automorphism. Then f (or) E W, . This means 

(A5 - I) f (WI) = (A5 - I)w, = ti E w, . 

Hence the number off E End(M) which are not automorphisms equals the number of 
w’s in W, which are solutions to 

(All - I)w = ti. 

This number is precisely equal to 1 Ker(AG - I) n W,, I. Likewise the number of 
f E End(M) which are linear but not automorphism equals the number of w’s in W,, which 
are solutions to 

This number is 1 Ker p(A) n W,, /. Since 1 Ker p(A) n W, / = 1 Ker(Azr - I) n W,, 1, 
every nonautomorphism of End(M) is linear. 

Since the reverse implication is obvious the proof is complete. 
Suppose now S # a. By an exhaustion of cases, it can be shown that if Aut(M) 

consists solely of linear transformations then either 

(*) ( V I < 4 and V is exemplified by one of the following situations 

(i) V = Z, x Z, , .?Y = z, ) A = (; ;), B = (;I, F = 2, ; 

(ii) V = 2, x 2, , z = z, ) A = (01, B= ;, 
0 F = Z, ; 
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(iii) b7 = Z, x  Z, , LY = Z, , A = (; ;j, B = (0), F ==- Z, ; 

(iv) I/ = Z, X Z, , ‘z = z, ) A = 69, B = (Oh F = Z, ; 

(v) I’ = z, ) z  = z, ) A = (O), B = (O), F =- Z3 ; 

(vi) L7 = Z, , .z = z, ) A = (Oh B = 64, F = Z, ; 

or 

(**) V= W,U(k+ W,,)uV,,KerA ={O,R). 

For the first case, it is straightforward to verify that the automorphisms of the linear 
automata described in (i)-(vi) are linear. 

For the second case we first note that for every automorphism f of M we must have 
f(q) = wi for all wi E W, . In fact, we knowf(wJ = w,, , w,, E W, . Now A(f(h + Ed)) = 
f(Aa) = ACT which in turn implies thatf(K + Ed) - BE Ker A. But since fe Aut(M), 
f(li + Ed?) #f(w). Thus f(K + W) = w + K for each w E W, . But this shows that 
f(w,) = wr for each w, E W, . Hence an automorphism f is completely determined by its 
action on a single element, say zj , of Vi . We know f(q) E V, and (A’1 - If = 
(A’1 - 1)q . Further,fis linear if and only if p(A)f(v,) = p(A)v, where p(x) is minimal 
such that p(A)v, E W, . If 

and 

Kl = {y E V, 1 (A’I - 1)~ = (A’1 - I)v,} 

then every automorphism of M is linear if and only if Ki = K, . 

THEOREM 5. Let M = (V, z, A, B, F) be a linear automaton such that 1 is not an 
eigenvalue of A. Let V = W, u S v I where S # o . 

(*I If v f w, u (k + WI) u g, , Ker A = (0, k} then Aut(M) consists solely 
qf linear transformations if and only ;f M is one of the automata described in (i)-(vi). 

(**) If V = W, U (K + W,) u V, , Ker A = (0, k}, then Aut(M) consists solely 
of linear transformations if and only if KI = I& , where KI and K, are as above. 

This concludes our study of linear automata M such that Aut(M) contains only linear 
transformations. We found in Theorem 3 that if V has two or more blocks then Aut(M) 
contains nonlinear functions. If V has exactly one block and no elements of finite nonzero 
order then Theorem 4 says Aut(M) contains only linear transformations if and only if 
the same is true for End(M). Finally in Theorem 5 the remaining situation in which 
Aut(M) contains only linear transformations is classified. 
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