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Let G be a finite group. The structure of the near-ring C(A) of identity 
preserving functionsf : G + G, which commute with a given automorphism A 
of G, is investigated. The results are then applied to the case in which G is a 
finite vector space and A is an invertible linear transformation. 

Let A be a linear transformation on a finite-dimensional vector space V over a 
field F. The problem of determining the structure of the ring of linear trans- 
formations on V which commute with A has been studied extensively (e.g., 
[3, 5, 81). In this paper we consider a nonlinear analogue to this well-known 
problem which arises naturally in the study of automorphisms of a linear auto- 
maton [6]. 

Specifically let G be a finite group, written additively, and let A be an auto- 
morphism of G. If C(A) = {f: G + G j fA = Af and f (0) = 0 where 0 is the 
identity of G), then C(A) forms a near ring under the operations of pointwise 
addition and function composition. That is (C(A), +) is a group, (C(A), .) is a 
monoid, (f+-g)h=fh+gh for all f, g, hcC(A) and f.O=O.f=O, 
f~ C(A). It is the purpose of this paper to investigate the structure of the near- 
ring C(A). 

Near-rings of group mappings have previously been investigated. In fact, if A 
is the identity on G then C(A) is the near-ring M,(G) = {fi G - G / f (0) = 0}, 
first investigated by Blackett [ 11. M oreover, if A is an automorphism of G then 
the near-ring C(4) is the centralizer of A in A!&,(G). We also mention that Betsch 
has considered a related problem. In [2] he studied the near-ring MHo(G) of 
identity preserving functions on G that commute with every element in a group 
N of fixed point free automorphisms. For other references to M,(G), M,O(G), 
and to near-rings in general we mention the recent book by Pilz [7]. 

In this paper we deal exclusively with finite groups. In Section 1 we charac- 
terize those C(A) that are simple. We find the rather surprising result that 
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28 MAXSON AND SMITH 

those semisimple C(A) are precisely the ones that are simple. In Section 2 we 
describe the radical J(C(A)) for those C(A) that are not semisimple. In the final 
section we apply our results to the case in which A is an invertible linear trans- 
formation on a finite vector space V. Here we find that in most cases J(C(A)) 
has a very explicit characterization. 

1. STRUCTURE OF C(A) 

As in the Introduction, let G be a finite group written additively, but not 
necessarily Abelian, and let A be an automorphism of G. The set C(A) = 
{f:G+GIfA =Af,f(O)=O} f arms a near-ring under the operations of 
pointwise addition and composition of functions. In this section we investigate the 
structure of C(A). 

We fix some notation and terminology used throughout. Let G* = G - {0}, 
and for v E G* let e(v) denote the orbit of o in G determined by A. So B(v) = 
{v, Av,..., A”-%} where K is the least positive integer such that A% = v. We 
denote the cardinality of B(v) by 1 e(v)1 and refer to this as the length (or size) 
of e(v). We define a partial order on the set of all orbits in G* as follows: 
the orbit e(w) is “less than” the orbit 0(v) if ) 19(w)] is a proper divisor of 1 e(v)1 . 
Thus B(v) is a minimal orbit if G* contains no orbits whose length is a proper 
divisor of 1 B(v)] . We extend this ordering to G by defining the orbit (0) to be 
less than every nonzero orbit. The reason for this ordering will become clear 
in the sequel. 

We now consider the problem of characterizing those C(A) that are simple 
near-rings. We note that if f~ C(A) then the values off on an orbit 0(v) are 
completely determined once f(v) is known, and f(B(v)) must also be an orbit 
of G, namely O(f(v)). 

LEMMA 1.1. Let t$ and 0, be orbits in G of lengths n and m, respectively. Then 
there exists an f E C(A) such that f (0,) = 0, if and only if m divides n. 

Proof. Suppose f E C(A) with f (0,) = 8, Let n = qm + Y, 0 < Y < m 
and let vi E f?, . Since / f(O,)j = m we have Pf(v,) = f(q) and m is minimal 
with this property. On the other hand, 

f (vJ = f (A’%,) = Anf (VI) = A’A”“f (vJ = A’f(v,), 

which implies Y = 0. 
Conversely suppose m divides n and choose v, E 0i , va E 0a . Define f: G + G 

by f (0) = 0, f (A%,) = A%, , j = 1, 2 ,..., n, and f(v) = 0 otherwise. Since m 
divides n, f is well-defined, and clearly f E C(A). 

We recall that if N - (N, +, .> is a near-ring then an additive subgroup H is 
N-invariant if NH C H and HN C H. 
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LEMMA 1.2. Let H be a C(A)-invariant subgroup of C(A). If there exists an 
h E H with the property that 1 h(e)1 = 1 6’ 1 f OY some orbit 0 in G*, then H contains 
the idempotent function e: G -+ G where e is the identity on 0 and 0 elsewhere. 

Proof. Choose v E 8 and let u = hv, an element of h(B). Define f: G-t G 
by f (A%) = A%, s = 0, I,..., and 0 elsewhere. Then f E C(A) and e = fhe E H. 

THEOREM 1.1. C(A) is simple zf and only if all the orbits of G* have the same 
length. 

Proof. Assume C(A) is simple. Among all the orbits of G* let 8 be an orbit 
of minimal length, say K. Let I = {f E C(A) 1 f (0) = (0) for all orbits of length K}, 
an ideal of C(A).SinceC(A) contains the identity map, 1# C(A). If G* contains 
an orbit 8 of length greater than K, then the map I which is the identity on 0 and 
zero elsewhere belongs to I. So in order for C(A) to be simple, all orbits of G* 
must have length k. 

Conversely suppose all the orbits of G* have the same length lz. If I is a 
nonzero ideal then there exists an f E 1 with j f (0,)j = 1 8, j for some orbit 0, 
in G*. By Lemma 1.2 the associated idempotent ei belongs to I. If Sj is another 
orbit of G*, define eji by eji(f+) = Bi and 0 elsewhere. Then e,eji = eji E I and by 
Lemma 1.2, ej E I. Hence the identity map 1 = Zej belongs to I, so I = C(A). 

We remark that when A is the identity map the above is a new proof to the 
known result that for a finite group G, M,(G) = {f: -+ G j f(0) = O> is a simple 
near-ring. 

Recall that a permutation A on a group G is called regular if A has no fixed 
points other than the identity of G and A is a product of cycles of the same order. 

COROLLARY 1.1. C(A) is simple ;f and only ;f either A is a regular permutation 
on G or A is the identity map. 

Betsch has shown that if H is a fixed point free group of automorphisms of a 
finite group G then the near-ring of zero preserving maps of G which commute 
with all the automorphisms in H is a simple near-ring. (See [2] or [7].) In our 
situation we have the cyclic group H = (A) of automorphisms of G generated 
by A. The proof of the following corollary is immediate from Theorem 1.1. 

COROLLARY 1.2. C(A) is simple if and only if (A) is fixed point free. 

COROLLARY 1.3. The following are equivalent: 

(a) C(A) is a$eld, 

(b) C(A) is a near-field, 

(c) G* has only one orbit. 

Proof. If C(A) is a near-field then C(A) is simple and all the orbits of G* 



30 MAXSON AND SMITH 

have the same length, say k. Since every nonzero element of C(A) is invertible, 
Lemma 1.2 implies that G* has only one orbit. 

If G* has only one orbit, 8, then C(A) is simple. Further, for a nonzero f in 

C(A), lf(Ql = I 0 I and so f is invertible. This implies that C(A) is a near- 
field. Since a near-field always has commutative addition ([7], p. 240) and since 
the multiplication in C(A) is clearly commutative, C(A) is a field. 

When C(A) is a simple near-ring much can be said about its structure. Some 
of the more immediate results are contained in the following remarks. 

The minimal left ideals of a simple C(A) can be characterized. In particular, 
the C(A)-subgroups C(A) ei , where e, is the idempotent associated with the 
orbit Bi , are the minimal left ideals. The equations (h + fei + h) = 

(h+f-h)e, and h(fei+g)-hg=(h(f+g)-hg)e,, f, g, heC(A) 
establish that C(A) ei is a left ideal. If K is a nonzero left ideal contained in 
C(A) ei then for h E K, h # 0, we have h(eJ = 8, where 1 0, j = / Bi 1 . Hence 
ei E K and C(A) ei is minimal. On the other hand if M is a minimal left ideal in 
C(A) then for a nonzero f in M there exist orbits Bi and 0, such that f (Oil = Bj . 
As above we find that ei E M and hence M = C(A) ei . Therefore if e, , e2 ,..., e, 
are the idempotents associated with the nonzero orbits of G then it is easily 
verified that C(A) = C(A) e, 0 C(A) ea @ ... @ C(A) e, . 

As a final remark concerning the structure of the simple near-rings C(A), 
we determine when the additive group (C(A), +) is abelian. Since C(A) is 
simple, all nonzero orbits have the same length and thus for each nonzero x andy 
in G there exists a function f in C(A) such that f (x) = y. Now if (C(A), +) 
isabeliantheny+x=(f+e,)x=(ei+f)x=y+xwherexEBi.ThusG 
is abelian. Hence for the simple near-rings C(A), (CA), +) is Abelian if and 
only if G is abelian. 

One of our primary applications of this work is to the study of functions on a 
finite vector space which commute with a given invertible linear transformation. 
We now interpret the above results in this setting. 

Let V be a finite-dimensional vector space over a finite field F and let A be an 
invertible linear transformation on V. For u E V*, e(v) = {v, Av,..., Ak-l) where 
A”v = v, K minimal. So (x” - 1) v = (A” - I) v = 0 and hence m(x; v) 
divides xii - 1 where m(x; U) is the minimal polynomial of v. This means that 
the orbit of zi has length k where k is minimal such that m(x; v) divides a poly- 
nomial of the form XI: - 1. 

In general for f (x) E F[x] with (x, f (x)) = 1, let k be the least positive integer 
such that f(x) divides xii - 1, and call k the order off(x). Thus the length of the 
orbit containing v E V* is the order of m(x; v). 

COROLLARY 1.4. Let A be an invertible linear transformation on the j%zite 
vector space V. Then C(A) is simple if and only if the minimal polynomial for A, 
m(x; V), is the product of distinct irreducible polynomials having the same order. 

Proof. Assume m(x; V) has the above form. If v E V* then m(x; v) is the 
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product of distinct irreducibles of the same order, say K. Hence the order of 
m(x; V) is K and 1 8(v)] = K. Th is is true for all 2, E I/‘* so C(A) is simple. 

Conversely if the minimal polynomial for A has factors (not necessarily 
irreducible) fi(x) and fi(x) of orders K, and R, , respectively, with K, # K, , 
then fi(x) = m(x; vi) and f.(x) = m(x; ~a) for some vi , ZJ~ E V*. Hence K, = 
/ 0(q)/ # / B(v,)i = K, , and C(A) is not simple. 

Back to the general setting, suppose that 0 is not a minimal orbit (recall the 
definitions preceding Lemma 1 .l) of G *. Then there exists a nonzero orbit 
0i < 8. Let M = {f~ C(A) if(e) < 8i or /f(e)] = 1 8i j andf(v) = 0 for 2, # e}, 
a nonzero C(A)-subgroup of C(A). Sincefif, = 0 for allf, , fi EM then M is 
nilpotent. Since a near-ring N is defined to be semisimple whenever N satisfies 
the descending chain condition on N-subgroups and has no nonzero nilpotent 
N-subgroups, we have established the following. 

THEOREM 1.2. IfC(A) is semisimple then all the orbits of G* are minimal. 

The converse of Theorem 1.2 is also true but in this case we find the rather 
surprising result that all orbits in G* must have the same size. This implies that 
C(A) is semisimple if and only if it is simple. Our result follows from the 
following group theory result due to S. Garrison and M. Pettet (oral communica- 
tion). 

LEMMA 1.3 (Garrison-Pettet). Suppose A: G -+ G is a Jixed point free auto- 
morphism of G and suppose e(x), e(y) are minimal orbits. Then either x + y = 0 or 

1 e(x + Y)I = I.c.m.tl wl , l fxa. 

Proof. Clearly l.c.m.(j e(x)[ , / 8(y)i} > I 8(x + y)l . Suppose x f y # 0 and 
let k = j 0(x + y)l . Th en Ak(x + y) = A”(x) + A”(y) = x + y, so 

-x + Ak(x) =y - AL(y). 

If At fixes x then it also fixes -x + AL(x) and hence / 0(-x + AL(x))1 divides 
j S(x)1 . By the minimality of e(x) either j 0(-x + A”(x))1 = I e(x)1 or 1. 

If / 0(-x + A”(x))1 = 1 e(x)] then I e(x)\ = 1 e(y - A”(y))1 and this divides 
/ f?(y)1 . By the minimality of B(y) either 10(x)1 = / e(y)/ or / e(x)1 = 1. (If 
1 0(x)1 = 1 then x = 0 since A is fixed point free.) In either case we are done. 

If / 8(-x + A”(x))/ = 1 then -x + Ak(x) = 0 = y - Ak(y), that is, 
AL(x) = x and A”(y) = y. This implies both I e(x)1 and j e(y)] divide k. So 

h = I e(x + 39 2 l.c.4 qx)i , l qy)i>. 

COROLLARY 1.5. If A: G + G is an automorphism of G such that all the 
orbits of G* are minimal, then they all have the same size. Hence C(A) is semi- 
simple if and only if C(A) is simple. 

481/54/1-3 
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Proof. If A has a fixed point then by definition of minimality all the orbits 
have length 1. If A has no fixed point assume e(x) and B(y) are minimal orbits 
such that 1 0(x)1 # 1 0( y)I . Then y + x # 0 and by the lemma ) 0(x + y)l = 

1.c.m.C w , 1 wh ~0 e(x + Y> is not a minimal orbit. Hence I e(x)! = 
1 e(y)1 as desired. 

The above implies that if C(A) has a nontrivial ideal then the radical J(C(A)) 
of C(A) is nontrivial. In the next section we describe this radical. 

2. THE RADICAL OF C(A) 

Recall that the radical of a near-ring N with identity is the intersection of all 
strictly maximal left ideals of N, that is, the intersection of all left ideals of N 
which are also maximal as N-subgroups. Thus to describe J(C(A)) it suffices to 
find all strictly maximal left ideals of C(A). To this end we first consider certain 
maximal C(A)-subgroups. 

LEMMA 2.1. FOY an OYM 0 of G* Zet N(0) = {n E C(A): n(O) is Z~SS than d}. If 
N(8) is a subgroup then N(B) is a maximal C(A)-subgroup. 

Proof. It is straightforward to verify that N(B) is a C(A)-subgroup. Suppose 
W is a C(A) subgroup that properly contains N(B). It is clear that for each orbit 
0, # 0, N(0) contains the associated idempotent e, . To show fl= C(A) it 
suffices to show the idempotent e associated with 8 belongs to m. 

Since N # N(8) there exists an f EN with 1 f (8)l = j f3 j , say f (0) = 0, . 
Using the C(A)-subgroup property of m there exists a g E m such that g(B) = 0 
and the range of g is 8 u (0). Suppose g(8) = 0, 0 # 0. Define h: G + G by 
h(a) = g(v) for B E 0 and 0 otherwise. Then h E N(B) and g - h has the pro- 
perty that (g - h) (0) = (0) and (g - h) (0) = 0. Continuing in this fashion if 
necessary shows e E n, hence m = C(A). 

The following example shows that there are maximal C(A)-subgroups not of 
the form N(0) for some orbit 0 in G*. 

EXAMPLE. Let G = 2, @ 2, and A = (i i). The orbits in G* are 0r = 

((1, W, 4 = ((2, OX-, 03 = ((1, 11, (2, l), (0, 1)) and 4 = {(0,2), (2,2), (1, 2% 
If M = {f E C(A) 1 f(0,) = f(&J} then it is easily verified that M is a C(A)- 
subgroup and one can check that M is also maximal. 

We show now that if M is a maximal C(A)-subgroup which is not of the form 
N(B) for any orbit 6 in G* then M cannot be a left ideal. As a consequence we 
will have that a strictly maximal left ideal of C(A) must be of the form N(B) 
for some orbit B and to characterize J(C(A)) t i will suffice to determine those 
N(0) that are left ideals. 

Assume M is a strictly maximal left ideal of C(A). Let 8,) 8, ,..., 8, be the 
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orbits of G*. Since M f C(A) not all of the idempotents ei, i = 1,2,..., s, 
are in M, say e, # M. Since M is a left ideal then M is a normal subgroup and 
consequently M + C(A) e, is a C(A)-subgroup ([7], pg. 46). The maximality of 
M means M + C(A) e, = C(A), and so there exist m E M, it E C(A) such that 
m + ner = 1. We note that m is the identity on 8, , 0s ,..., es , i.e., me, = ei for 
i 3 2. Assume m(0,) = 0s . Then for j > 3 we have ejm = ej EM. Consider 
m, = m - (me3 + ... + me,) E M, which has the following properties: 
m,(B,) = 8,) m,(B,) = 8, , m,(Q = (0) for j 3 3. 

Two situations arise. Either there exists an f E M such that f (0,) = Bi with 
/ O1 / = 1 8, / or else f (0,) -c d1 for every f E M. 

If we have the first situation, then for f E M such that f (0,) = Bi with 1 8, 1 = 
1 ei 1 consider fi = f - (fes + ... + fes) E M. The function fi has the following 
properties: 

fd4) = 4 , fa4) = 4, fdh) = (0) fork > 3 and some j. 

We have eilfi EM where e,(Q = f9r and 0 otherwise. Moreover ei,fi(t9,) = 0, , 
ei,fi(t9,) = e,(Q, and eilfi(O,) = (0) for k >, 3. If Bi # Bi then e,,fi(fQ = (0) 
and e, E M, a contradiction. Hence Bi = Bi and this means 1 Bj 1 = 1 Bi / = 
I 4 I = I 4 I . 

Since M is an ideal we have g = e,(m, + e,) - e, E M, which annihilates 
each 0, , j 3 2. If v E 0, with ml(v) + v $8, theng(v) = -v, hence e, EM. On 
the other hand, if m,(v) + v E 0r then g(v) = ml(v) E t12, and 0 off or. Since 
e,,g E M then e, E M, giving a contradiction. 

Suppose the second situation holds, namely f (0,) < 8, for all f E M. Then M 
is a subset of N(0,). We have seen above that es ,..., e, belong to M and we now 
show es belongs to M. Suppose not, then the maximality of M means 
M + C(A) ea = C(A). But for each f E M, g E C(A) we have (f + ge,) e1 = 
f(0,) < 8, . This means M + C(A) es C iV(0,) which is impossible, so e2 E M. 
This means that whether or not a function belongs to M depends only on its 
action on 8, , i.e., functions in M can be arbitrarily defined off 0r (subject to 
being in C(A)). 

Let M(Q = {f(x) E G 1 f E M and x E or}, a subgroup of the group G(B,) = 
{X E G I e(x) < 0, or 1 e(x)] = 1 8, 11. w e note that M(8,) has the following 
properties: 

(i) M(B,) is a union of orbits in G, 

(ii) if the orbit 0 is a subset of M(B,) then so is every orbit d with 
pl=lel. 

For convenience we will call such subgroups of G(B,) s-subgroups. We note 
that s-subgroups give rise to C(A)-subgroups in a natural way. Thus, since M 
is a maximal C(A)-subgroup, M(0,) . IS a maximal s-subgroup of G(B,). 
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If 0i is a minimal orbit then necessarily M(B,) = (0). But in this case N(B,) is a 
maximal C(A)-subgroup so M = N(0,). 

We may now assume 0i is not minimal. Let 4 be an orbit in G* such that 
d < 0i . Then {f~ C(A) j f(0,) < d or 1 f(e)1 --_ / 0 I} is a C(A)-subgroup and 
this means M(0,) # {0}, due to the maximality of M. We now show that n/l 
must equal qe,). 

If this is not the case then there exists an orbit 6 < 0i with e n M(e,) = c . 
Choose I!? minimal with respect to this property. Let H = M(O,) u {x E G 1 

/ e(x)1 = / s” I}. Since M(0,) is a maximal s-subgroup there exists an x in M(8,) 
and a y in H - M(B,) such that x + y 4 H (otherwise H would be a group). 
Choose x E 8, and define functions f, g E C(A) as follows: 

and 

f (la) = A%, i = 0, l,..., 

f (4) = ioh i# 1, 

g(A%) = Aiy, i = 0, l,..., 

g(4) = ioh j# 1. 

Then both f and Z( f + g) - Fg belong to M where E is the idempotent associated 
with B(y). But (e(f + g) - cg) (x) = -y and -y does not belong to M(O,), a 
contradiction. This means M(6,) = {x I 0(x) < e,} which in turn implies that 
M = iye,). 

This establishes the following result. 

LEMMA 2.2. If M is a strictly left ideal of C(A) then M = N(B) for some orbit 
0 in G*. 

It remains to characterize those N(B) that are left ideals. Let 0 be an orbit of 
G*, say / 8 I = k, and let G, = uBi, where the union is over all orbits of G 
whose order divides k and let U, = {w E G 1 e(u) is less than f?}. Clearly A(G,) = 
Gk and GI, = (ue,) u U, where I Bj 1 = k. 

LEMMA 2.3. Let 0, and O2 be distinct orbits of the same length. Then N(0,) is a 
left ideal of C(A) if and onZy if N(&J is. 

Proof. Let 0, = e(s), 0, = e(ws) and define Al: G--t G by a(..&,) = A$ , 
“(A%,) = A%, , i = 1, 2, . . . . and a(~) = z, otherwise. Clearly ol E C(A). Define 
R,: C(A) --f C(A) by R,(f) = fa. It is easily verified that R, is an automorphism 
of (C(A), +) and R2 = 1. Moreover RJN(B,)) = N(B,), and N(0,) is a normal 
subgroup of C(A) if and only if N(0,) is. 

Suppose N(0.J is a left ideal. For f, g E C(A), n, E N(0,) we have 
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(f(nr + g) - fg) 01 = f(nrti + gz) - fgol E N(B,) since nr~l E N(B,). Thus 
f(n, + g) - fg E N(0,). By symmetry the lemma is proven. 

THEOREM 2.1. Let 0 be an orbit of length k. Then N(0) is a strictly maximal 
left ideal if and only ;f U, is a normal subgroup of G, and every orbit of length k 
is a union of cosets of U, in Gk . 

Proof. We first show the conditions are sufficient. Since U, is a group, 
N(6) is a group and thus from Lemma 2.1, N(B) is a maximal C(A)-subgroup. 
Let f E C(A), n E N(B). Then for VEB we have (f + n -f) v E U, since 
f(v) E Gk and U, is normal in G, . Hence f + n - f E N(B) and N(8) is a normal 
subgroup. To show that N(B) is a left ideal, let f, g E C(A), n E N(0) and consider 
(f(n + g) - fg) v, u E 0. If g(v) E U, then both f (n(v) + g(c)) and fg(v) belong 
to U, so (f(n + g) - fg) v E U, and f (n + g) - fg E N(0). Assume g(v) 4 U, . 
Since n(v) E U, then n(u) + g(v) and g(v) belong to the same coset of U, in Gk 
and thus belong to the same orbit &g(v)). Let s > 0 be minimal such that 
A% - z’ belongs to U, . Then e(v) is the union of s cosets, namely, 

v + u, = {Am’ 1 t = 0, 1, 2 }, )... 

Av + u,; = {ASi 1 t = 0, 1, 2 ,... 3, 

AS-'v + u, = {AsyAS-127) ) t = 0, 1, 2,...}. 

We have n(v) + g(v) = P(g(v)) for some t. Thus (f(n + g) = fg) (w) = 

f (AYg(4)) - f (g(v)) = A”%(+ - fg(4 = (ASt - I)fg(v). But A%(v)) and 
fg(v) belong to the same coset of 72, so (ASt - I) fg(v) E U, . Hence f (n + g) - 
fg E N(B) as desired. 

For the necessity, suppose N(B) is a strictly maximal left ideal. If U, is not a 
subgroup, say wr , w2 E U, but wr + w2 = v $ U, , then we must have 
1 e(v)1 = k. Let f = g = e, where e, is the identity on e(v) and 0 elsewhere. 
Define n: G + G by n(A%) = -Aiw, and n(v) = 0, v 4 0(v). Then n E N(B(v)) 
which must be a left ideal by Lemma 2.3. But (el(n + ei) - e,) u = -U which 
means er(n + e,) - e, 4 N(B(v)). This contradiction implies that U, is a sub- 
group. If U, is not normal in G, then there exist v E G, , w E U, such that 
v + w - o $ U, . Defining n by n(A%) = Aiw, i = 0, l,..., and n(a) = 0 if 
Z’ $8 then e, + n - e, ~6 N(8). Thus U, is normal. If w E Uk , v E 0(v) then we 
must have w + u E e(v), otherwise using an argument similar to the above it 
can be shown that N(B) is not a left ideal. 

It is immediate from the theorem that if 0 is a minimal orbit in G* then N(0) 
is a strictly maximal left ideal in C(A). We note also that even though U, is a 
normal subgroup of Gk and some of the orbits of length k are unions of cosets 
of Uk , it need not be the case that all orbits of length k are unions of cosets. 
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EXAMPLE. Let G = (ZJ4 with 

0 0’ 1 0 

A= i 0010 1 0001’ 
1 0 0 0 

G has two orbits of length 1, a unique orbit of length 2, and three orbits of 
length 4. One of the orbits of length 4 is a coset of U, , while the other two are 
not. Note that if 6 is the unique orbit of length 2 then necessarily N(B) is a left 
ideal. 

From the above discussion, in order to determine ](C(A)) one needs to 
investigate the sets N(B). By definition, N(t),) = IV(&) if and only if 0, = 8, , 
so in order to find the strictly maximal left ideals in C(A) one is left with the 
straightforward but tedious task of determining which orbits satisfy the criteria 
of Theorem 2.1. From Lemma 2.3, if one orbit of length K determines a strictly 
maximal left ideal then so does every orbit of length k. Moreover, as the next 
proposition shows, the length of an orbit 0 determines the isomorphism class of 
the left ideal N(B). 

PROPOSITION 2.1. If N(B,) and N(B,) are left ideals then IV@,) and N(B,) are 
C(A)-isomorphic if and only ;f 1 8r [ = 1 0e 1 . 

Proof. If 1 0r j = 1 0a 1 then the group automorphism R, defined in the proof 
of Lemma 2.3 is easily verified to be a C(A)-isomorphism. Conversely, let 
+: iV(0,) + N(Q be a C(A)-isomorphism and define Z!Z(Q = {f E N(B,) 1 e, f = f) 
for i = 1,2. That is, H(ei) = (f E N(B,) 1 range f C 0, u {0}}, i = 1, 2. Now + 
induces a bijection between H(Q and H(B,). Suppose 1 0r 1 # 1 0a I , say 1 8a / < 

I 4 I . Then fw,) = {f E c(A) I f (4) = f (4 = (01 and f (4) c 4 u m, 
i 4 {I, 2)) while H(B,) = (f E C(A) 1 f (0,) = (0) and f (Q C 0, u {0}, i # 2). 
Thus 1 H(B,)/ $ 1 H(0,)\ , contradicting the fact that there is a bijection between 
H(B,) and H(B,). 

We now let L, , L, ,..., L, denote the collection of strictly maximal left ideals 
of C(A) and define II = n {Li 1 Li EL,}. From the above proposition, II = 
{f E C(A) If (tit) < Bi for all orbits of length 1 0, I} and consequently it is easy to 
show that 1, is an ideal of C(A). Suppose J is an ideal of C(A) such that Js II . 
For a, E J - I, , we have uj $ L, for some Lj EL, . Hence ( uj(ej)i = I Bj I and 
so, using the ideal property of J, ej E J. But also from the ideal property of J 
we find that there exists ai E J - I1 , ui $Li for each Li NL~ and so ei E J for 
each nonzero orbit Bi of G. Hence 1 E J. This shows that II is a maximal ideal 
of C(A). 

COROLLARY 2.1. Let {& ,& ,..., K,} be a partition of the set of strictly 
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maximal left ideals into isomorphism classes and let Ij = n {L 1 L E Kf}, 
j = 1,2 ,..., t. Then Ii is a maximal ideal and J(C(A)) = nIS1 Ij . 

One of the more interesting properties of the radical J(N) of a finite near-ring 
N is that, in contrast to the situation for rings, J(N) is not necessarily nilpotent. 
We answer the natural question as to when J(N) is nilpotent in the next proposi- 
tion. 

PROPOSITION 2.2. J(C(A)) is nilpotent if and only iffor every nonzero orbit 0, 
N(0) is a strictly maximal left ideal. 

Proof. Let J(C(A)) b e nilpotent. Suppose there is a nonzero orbit 0 such that 
N(0) is not a strictly maximal left ideal. Then the functionf defined byf(B) = 6’ 
and f(8) = (0) for 0 # 0 is in J(C(A)) and for each positive integer n, f n # 0. 
This contradicts the fact that J(C(A)) is nilpotent which in turn gives the desired 
result. Conversely if N(B) is a strictly maximal left ideal for every nonzero orbit 
0 then J(C(A)) = {f~ C(A) 1 f(0) < 6 for 8 # (0)). Since the number of orbits 
is finite, J(C(A)) is nilpotent. 

From the above proposition and results in [7, Chap. 51 we obtain several 
relationships among the various well-known radical-like objects of near-ring 
theory. Some of these are given in the following. 

COROLLARY 2.2. Let A be an automorphism of G such that for every nonxero 
orbit 0, N(B) is a strictly maximal left ideal of C(A). The following are equivalent to 
J(C(A)) being nilpotent: 

(i) J(C(A)) is nilpotent, 

(ii) J(C(A)) is quasiregular, 

(iii) J(C(A)) = n {L (L is a maximal left ideal), 

(3 J(CW) = n W I K is a maximal C(A)-subgroup}, 

(v) J(C(A)) = n {M / M is a maximal ideal}. 

In the example following Theorem 2.1, there is an orbit 0, 0 # (01, such that 
N(0) is not a strictly maximal left ideal. Thus in this case J(C(A)) satisfies none 
of the characterizations of Corollary 2.1. On the other hand, we now give an 
example showing that the above situation can arise. Thus we observe that the 
structure of J(C(A)) is intimately associated with the orbit structure of the 
group G as determined by the automorphism A. 

EXAMPLE. Let G = (,ZJ3 with 
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G has a unique orbit of length 4, a unique orbit of length 2, and a unique nonzero 
orbit of length 1. Hence N(8) is a strictly maximal left ideal for each nonzero orbit 
and so J(C(A)) is nilpotent. 

This concludes our general study of C(A). In the next section we specialize 
to the near-ring C(A) where A is an invertible linear transformation on a finite 
vector space. In this situation we give a complete description, in terms of 
minimal polynomials, of those N(0) that are strictly maximal left ideals. 

3. THE CENTRALIZER OF AN INVERTIBLE LINEAR TRANSFORMATION 

Throughout this section G = I/ is a vector space over a finite field F and A 
is an invertible linear transformation on V. As above we let 6 be an orbit of V*, 
j 0 / = K, then V, = ~0~ where the union is over all orbits of V whose length 
divides K, and U, is the union of all orbits which are less than 0. V, is an A-inva- 
riant subspace of V. Theorem 2.1 states that N(0) is a left ideal of C(A) if and 
only if U, is a subspace and every orbit of length k is a union of cosets of U, . 
We now seek a description of such vector spaces V, . 

Let A, be the restriction of A to Vk . 

LEMMA 3.1. If N(B) is a left ideal of C(A) and 0 is not a minimal orbit then 
V, is indecomposable relative to Ak , 

Proof. Since N(B) is a left ideal of C(A), then Theorem 2.1 applies. Suppose 
V, = W, @ W, where W, , W, are A,-invariant subspaces. Since U, is a 
proper subspace of V, it cannot contain both W, and W, . Suppose wr E W, 
with wi $ U, . Then / 0(w,)l = k and so wr + U, C e(w,) C W, . Thus U, C W, . 
If W, # (0) then there is a wa E W, such that / 0(w,)j = k. Again this means 
U, C W, , a contradiction since U, # (0). Hence V, is indecomposable. 

Since V, is indecomposable the minimal and characteristic polynomials for 
A, are equal, and moreover this polynomial must be a power of an irreducible 
polynomial, say m(x; V,) = p(x)” [4, p. 1291. 

LEMMA 3.2. Suppose N(0) is a left ideal of C(A) where 0 is not minimal and 
101 =k.Letvge. Then 

(a) m(x; v) = m(x; w)fo~ esery w E V such that j e(w)1 = k, 

(b) F is a prime field, 

(c) m(x; V,) = (x - a)“for some a # 0 EF. 

Proof. As above we have V, is indecomposable, so m(x; V,) = p(x)” where 
p(x) is irreducible. We also have 

(0) c vp c . . . c vy c vim) c . . . c vp) 
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where I’;’ = kerp(A,,, U, = L$+l) and every orbit in VP’ - I$“-” has 
size k and is the union of cosets of U, . Consider W = Vp’/Uti with the induced 
linear transformation Jk . We have m(x; W) = p(~)n-~+l and 

(0) c W'l' c . c W(wJI+l) _ w 
9 

where Wti) = kerp(J# and all the orbits of W* have the same size. Since 
O@(X)) < o@(x)“) the above implies n = m. This proves part (a). 

We now have 

(0) c vp c . . . c vp c VP’, 
where U, = VP-l). Suppose first that n = 2. Then Vi2) - Vk’) contains orbits 
of length k = 0($(x)‘) = O@(X)) p = hp where p = char F and (h, p) = 1. Since 
each orbit in I’:) - Vc) is the union of cosets of U, = I$” then 

must divide hp. Since (h, p) = 1 then we must have j F ( = p and degp(x) = 1. 
If 71 > 2 then again consider IV = V($‘/Vp-‘) with the induced linear trans- 

formation Bk . We have m(x; W) = p(x)” and 

(0) c W(1) c w, 

where W(l) = kerp(Jk). Moreover the orbits of W - W(l) are unions of cosets 
of W(l). Thus as in the above, 1 F I = p and degp(x) = 1. 

We now turn to the main result of this section, the characterization of the 
strictly maximal ideals in C(A) and hence the description of J(C(A)). We con- 
tinue our notation that o(f(z)) is th e order of f(x) E F[x], m(x; V) is the minimal 
polynomial, and c(x; V) is the characteristic polynomial for A. 

THEOREM 3.1. Let A be an invertible linear transformation on a Jinite vector 
space over a$eld F. For v E V*, N(B( v )) . zs a strictly maximal left ideal of C(A) ;f 
and only if exactly one of the following holds: 

(a) O(v) is a minimal orbit, 

(b) m(x; v) = (x - 1)3, F = 2, , m(x; V) = (x - l)“gr(x) and c(x; V) = 
(x - 1)3 g2(x) where gz(x) has no linear factors, 

(c) m(x; v) = (x - 1)2, F = 2, , m(x; V) = (x - l)“g,(x) and c(x; V) = 
(x - 1)” gz(x) where s > 2 and gz(x) has no linear factors, 

(d) m(x; v) = (x - a)2, F = 2, , p # 2, m(x; V) = (x - a)“gl(x) where 
gl(x) has no linear factors x - b with o(x - b) dividing o(x - a), c(x; V) = 

(x - 4”g2W 
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Proof. Suppose that N(B( )) v is a left ideal. We will assume that 8(v) is not a 
minimal orbit and show that one of (b)-(d) must hold. From Lemma 3.2 we have 
m(x; V) = (X - a)~ and F = 2,. If j 0(v)] = s then Us is a group and 0(v) is a 
unionofcosetsof1;1,.Wehaveo(x--)=A,1 <k<p-- l,andsoxk- 1 = 
(x - u) q(x). For any t > 0, (x” - 1)“” = &pt - 1 = (X - a)~~ q(zc)of. Hence 
the length of e(w) is kpt where t is minimal such that ,J 2 n. Also, from Lemma 
3.2, we have 1 U, 1 = pn-l. 

In order for e(v) to be a union of cosets of lJ, we must have 

p”-l I kptpt, (k, p) = 1, (1) 

where t is minimal such that pt > n. This means pn-l divides pt, or n - 1 < t. 
Assume n > 5. Then it can be shown that n < pn-2 and this means 

t < n - 2 < n - 1 and (1) does not hold. If n = 4 and p > 2, the above 
argument is still valid and (1) d oes not hold. If n = 4, p = 2 then t = 2 and 
t < n - 1 so (1) does not hold. 

Assume n = 3. If p > 2 then t = 1 and (1) does not hold. If p = 2 then t = 2 
and (1) is satisfied. This means m(x; V) = (X - 1)” and c(x; V) has the form 
c(x; V) = (x - l)“gi(x) whereg,(x) h as no linear factors. Lemma 3.1 forces the 
minimal polynomial to have the form m(x; I’) = (x - l)“gz(x). If k > 3 then 
there exists a q E V such that m(x; q) = (X - 1)4 and 1 S(q)\ = 4. By Lemma 
2.3 and Theorem 2.1, e(q) is a union of cosets of U, . Since j U, / = 4 then 
‘z+ + u, = ecwl), but A cui - vi E U, implies (X - 1)3 o1 = 0, a contradicition. 
Thus k = 3 and we have part (b) of the theorem. 

If n = 2, p = 2 then t = 1 and (1) is satisfied. As above c(x; I’) = 
(X - l)“gi(x) and m(x; I’) = (X - l)“g,(x) where gi(zc) has no linear factors. 
This gives (c). 

If n = 2, p > 3 then t = 1 and (1) is satisfied. Again c(x; V) = (x - u)“gi(x) 
and m(x; V) = (x - a)bg2( ) x w ere x - a does not divide gi(x). Suppose h 
gi(x) has a linear factor x - b such that o(x - b) divides o(x - a). Then for 
w E U, with m(x; w) = x - a we have w + z, # e(u), a contradiction to Lemma 
3.1. We now show k = 2. If k 2 3 then there is an element q E V such that 
m(x; q) = (X - a)3 and 1 t9(n1)l = 1 8(v)] , say kp. The orbit B(q) is a union of 
cosets of li, and this means (AZ - 1) q E U, for some 1 < kp. But then 
(A - aI> (AZ - I) q = 0 so (zc - u)” divides x2 - I which is impossible since 
I < k. Hence we have (d). 

If n = 1 then t = 0 and (1) is satisfied. Then m(x; U) = x - a and it is 
easily seen that e(v) must be a minimal orbit. 

It remains to show that situations (a)-(d) actually give rise to left ideals of 
C(A). Part (a) is obvious. 

Assume part (b) holds. Then B(v) has size 4 and U, = ker(A - I>“. If e(q) 
is any orbit of size 4 then w = (A - I) wl E U, since (A - Q2 w = 0. Since 
m(x; w) = (X - 1)a it is easy to see that q + U, = e(q). By Theorem 2.1, 
N(B(v)) is a left ideal. 
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Assume (c) is true. Then / e(v)1 = 2 and U, = ker(A - I). If 0(q) has size 2 
then m(x; q) = (X - 1)2 and as above (A - I) q # 0 E U, , SO T.J~ + U = e(s). 

Assume (d) is true. Let 1 e(v)1 = kp then U,,, = ker(A - al), ) U,, 1 = p. 
Let e(q) be any orbit of length k. Then m(x; zll) = (X - a)2 and since 
w = (Ak - I) v1 E U,, we have 

Aku, = zil + w, 

A2”v, = Akol + Akw = vI + 2w, 

and in general Aiku, = q + iw, i = 1, 2,..., p. So 0(q) = V~ + Uk and now 
apply Theorem 2.1. 

From Theorem 3.1 we note that in most cases (the exceptional cases being 
(b)-(d)) the radical of C(A) is the intersection of those N(0) where 0 is a minimal 
orbit. This characterizes the radical as the set of functions that annihilate all 
minimal orbits. 

Summarizing our results for the situation of this section we have the following. 

THEOREM 3.2. Let V be a jinite vector space over the field F and let A be an 
invutible linear transformation on V. Then 

(i) C(A) is semisimple if and only if it is simple; 

(ii) C(A) is simple if and only if m(x; V) is a product of distinct irreducible 
polynomials all having the same order; 

(iii) If C(A)isnot simpleandFisnotaprime$eld then J(C(A)) = n{N(O) 10 
is a minimal orbit of V*}. 
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