160 research outputs found

    Proximity, maps and conflict: New measures, New maps and New findings

    Get PDF
    This article introduces two new datasets. The first is a new interstate distance dataset. It is recognized that different theories regarding distance and conflict will call for different understandings of “distance” and accordingly, ten different types of distance measurement are presented. Moreover, it is argued that in order for a distance dataset to contain accurate distances, it is necessary for it to be based on maps reflecting state border changes over time. As such, a new map dataset is presented, including annualized maps for all states, stored in KML format. It will be shown that the frequent border changes experienced by states can have large impacts on distance calculations. The significance of the relationship between distance and conflict will be tested for the ten different types of distance measurement, not with the aim of finding a “best measure” but in order to demonstrate that distance remains an important variable and that each different form of distance measure can be significant

    Uptake of alkaline earth metals in Alcyonarian spicules (Octocorallia)

    Get PDF
    Alcyonarian corals (Octocorallia) living in shallow tropical seas produce spicules of high-Mg calcite with ∼13 mol% MgCO3. We cultured the tropical alcyonarian coral Rhythisma fulvum in experiments varying temperature (19–32 °C) and pH (8.15–8.44). Alkalinity depletion caused by spicule formation systematically varied in the temperature experiments increasing from 19 to 29 °C. Spicules were investigated for their elemental ratios (Mg/Ca, Sr/Ca) using ICP-OES, δ44/40Ca using TIMS, as well as δ18O and δ13C by IRMS. Mg/Ca increased with temperature from 146 to 164 mmol/mol, in good agreement with the range observed for marine inorganic calcite. Mg/Ca increased by 1.0 ± 0.4 mmol/mol/°C, similar to the sensitivity of Miliolid foraminifera. The pH experiments revealed a linear relationship between Mg/Ca and carbonate ion concentration of +0.03 ± 0.02 mmol/mol/μMol. Sr/Ca ranges from 2.5 to 2.9 mmol/mol being in good agreement with other high-Mg calcites. Temperature and pH experiments showed linear dependencies of Sr/Ca matching inorganic calcite trends and pointing to a decoupling of crystal precipitation rate and calcification rate. Ca isotopes range between 0.7‰ and 0.9‰ in good agreement with aragonitic scleractinian corals and calcitic coccoliths. Presumably Ca isotopes are fractionated by a biological mechanism that may be independent of the skeletal mineralogy. We observe no temperature trend, but a significant decrease of δ44/40Ca with increasing pH. This inverse correlation may characterise biologically controlled intracellular calcification. Oxygen isotope ratios are higher than expected for isotopic equilibrium with a temperature sensitivity of −0.15 ± 0.03‰/°C. Carbon isotope ratios are significantly lower than expected for equilibrium and positively correlated with temperature with a slope of 0.20 ± 0.04‰/°C. Many of our observations on trace element incorporation in R. fulvum may be explained by inorganic processes during crystal formation, which do not comply with the intracellular mode of calcification in Alcyonarian corals. The observed elemental and isotopic compositions, however, could be explained if the partitioning caused by biological mechanisms mimics the effects of inorganic processes

    Sexual behavior research on a Cohort of gay men, 1984–1990: Can we predict how men will respond to interventions?

    Full text link
    In 1984, over 1000 gay and bisexual men volunteered to participate in both the Chicago Multicenter AIDS Cohort Study (MACS) and a companion psychosocial study, the Coping and Change Study (CCS). Participants in the semiannual Chicago MACS/CCS evaluations comprise the largest cohort of high-risk men under continuous medical, behavioral, and psychosocial observation. Chicago MACS/CCS researchers prospectively chart the sexual behavior change patterns of the cohort and relate those behavioral changes to psychosocial correlates and actual HIV infection risk. This report summarizes the behavioral natural history of the Chicago MACS/CCS cohort from 1984 to 1990, focusing on receptive anal sex practices and use patterns for alcohol and the most frequently used recreational drugs. As these are prospective observational and not controlled intervention studies, psychosocial correlates of sexual behavior change by members of the cohort are suggestive of factors influencing behavior change rather than indicative of causal relationships. However, the voluntary availability to participants in the Chicago MACS/CCS of HIV-1 antibody test results beginning in late 1985 provided the opportunity to examine whether demographic, psychosocial, or behavioral factors were indicators of sexual behavior change following disclosure and counseling about HIV-1 serostatus. Recommendations for promotion and maintenance of safer sexual behavior for the long run, and limitations in the generalizability of these findings to the much more diverse populations of men who have sex with other men conclude this article.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44099/1/10508_2005_Article_BF01541496.pd

    Detection of Cosmic Structures using the Bispectrum Phase. II. First Results from Application to Cosmic Reionization Using the Hydrogen Epoch of Reionization Array

    Get PDF
    Characterizing the epoch of reionization (EoR) at z6z\gtrsim 6 via the redshifted 21 cm line of neutral Hydrogen (HI) is critical to modern astrophysics and cosmology, and thus a key science goal of many current and planned low-frequency radio telescopes. The primary challenge to detecting this signal is the overwhelmingly bright foreground emission at these frequencies, placing stringent requirements on the knowledge of the instruments and inaccuracies in analyses. Results from these experiments have largely been limited not by thermal sensitivity but by systematics, particularly caused by the inability to calibrate the instrument to high accuracy. The interferometric bispectrum phase is immune to antenna-based calibration and errors therein, and presents an independent alternative to detect the EoR HI fluctuations while largely avoiding calibration systematics. Here, we provide a demonstration of this technique on a subset of data from the Hydrogen Epoch of Reionization Array (HERA) to place approximate constraints on the brightness temperature of the intergalactic medium (IGM). From this limited data, at z=7.7z=7.7 we infer "1σ1\sigma" upper limits on the IGM brightness temperature to be 316\le 316 "pseudo" mK at κ=0.33\kappa_\parallel=0.33 "pseudo" hh Mpc1^{-1} (data-limited) and 1000\le 1000 "pseudo" mK at κ=0.875\kappa_\parallel=0.875 "pseudo" hh Mpc1^{-1} (noise-limited). The "pseudo" units denote only an approximate and not an exact correspondence to the actual distance scales and brightness temperatures. By propagating models in parallel to the data analysis, we confirm that the dynamic range required to separate the cosmic HI signal from the foregrounds is similar to that in standard approaches, and the power spectrum of the bispectrum phase is still data-limited (at 106\gtrsim 10^6 dynamic range) indicating scope for further improvement in sensitivity as the array build-out continues.Comment: 22 pages, 12 figures (including sub-figures). Published in PhRvD. Abstract may be slightly abridged compared to the actual manuscript due to length limitations on arXi

    Improved Constraints on the 21 cm EoR Power Spectrum and the X-Ray Heating of the IGM with HERA Phase I Observations

    Full text link
    We report the most sensitive upper limits to date on the 21 cm epoch of reionization power spectrum using 94 nights of observing with Phase I of the Hydrogen Epoch of Reionization Array (HERA). Using similar analysis techniques as in previously reported limits (HERA Collaboration 2022a), we find at 95% confidence that Δ2(k=0.34\Delta^2(k = 0.34 hh Mpc1^{-1}) 457\leq 457 mK2^2 at z=7.9z = 7.9 and that Δ2(k=0.36\Delta^2 (k = 0.36 hh Mpc1)3,496^{-1}) \leq 3,496 mK2^2 at z=10.4z = 10.4, an improvement by a factor of 2.1 and 2.6 respectively. These limits are mostly consistent with thermal noise over a wide range of kk after our data quality cuts, despite performing a relatively conservative analysis designed to minimize signal loss. Our results are validated with both statistical tests on the data and end-to-end pipeline simulations. We also report updated constraints on the astrophysics of reionization and the cosmic dawn. Using multiple independent modeling and inference techniques previously employed by HERA Collaboration (2022b), we find that the intergalactic medium must have been heated above the adiabatic cooling limit at least as early as z=10.4z = 10.4, ruling out a broad set of so-called "cold reionization" scenarios. If this heating is due to high-mass X-ray binaries during the cosmic dawn, as is generally believed, our result's 99% credible interval excludes the local relationship between soft X-ray luminosity and star formation and thus requires heating driven by evolved low-metallicity stars.Comment: 57 pages, 37 figures. Updated to match the accepted ApJ version. Corresponding author: Joshua S. Dillo

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore