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Abstract 

 

Alcyonarian corals (Octocorallia) living in shallow tropical seas produce spicules of high-Mg 

calcite with ~13mole% MgCO3. We cultured the tropical alcyonarian coral Rhythisma fulvum 

in experiments varying temperature (19-32°C) and pH (8.15-8.44). Alkalinity depletion 

caused by spicule formation systematically varied in the temperature experiments increasing 

from 19 to 29°C. Spicules were investigated for their elemental ratios (Mg/Ca, Sr/Ca) using 

ICP-OES, δ44/40
Ca using TIMS, as well as δ18

O and δ13
C by IRMS. Mg/Ca increased with 

temperature from 146 to 164 mmol/mol, in good agreement with the range observed for 

marine inorganic calcite. Mg/Ca increased by 1.0±0.4 mmol/mol/°C, similar to the sensitivity 

of Miliolid foraminifera. The pH experiments revealed a linear relationship between Mg/Ca 

and carbonate ion concentration of +0.03±0.02 mmol/mol/µMol. Sr/Ca ranges from 2.5 to 2.9 

mmol/mol being in good agreement with other high-Mg calcites. Temperature and pH 

experiments showed linear dependencies of Sr/Ca matching inorganic calcite trends and 

pointing to a decoupling of crystal precipitation rate and calcification rate. Ca isotopes range 

between 0.7‰ and 0.9‰ in good agreement with aragonitic scleractinian corals and calcitic 

coccoliths. Presumably Ca isotopes are fractionated by a biological mechanism that may be 

independent of the skeletal mineralogy. We observe no temperature trend, but a significant 

decrease of δ44/40
Ca with increasing pH. This inverse correlation may characterise biologically 

controlled intracellular calcification. Oxygen isotope ratios are higher than expected for 

isotopic equilibrium with a temperature sensitivity of -0.15±0.03 ‰/°C. Carbon isotope ratios 
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are significantly lower than expected for equilibrium and positively correlated with 

temperature with a slope of 0.20±0.04 ‰/°C.  

Many of our observations on trace element incorporation in R. fulvum may be explained by 

inorganic processes during crystal formation, which do not comply with the intracellular 

mode of calcification in Alcyonarian corals. The observed elemental and isotopic 

compositions, however, could be explained if the partitioning caused by biological 

mechanisms mimics the effects of inorganic processes. 

 

1. INTRODUCTION 

 

Alcyonarian spicules are a common accessory component of modern marine sediments. Their 

occurrences were already discussed in 19th and early 20th century publications on marine 

sediments. Samples collected during the H.M.S. Challenger expeditions (1873-1876) 

frequently showed alcyonarian spicules in shallow water deposits and occasionally in deep 

water “globigerina and pteropod oozes” (Thomson and Murray, 1891). Their ability to 

contribute significantly to some reef sediments was discussed by Cary (1917).  Quantitative 

estimates of alcyonarian spicule frequencies in tropical, subtropical, and temperate carbonate 

sediments can be found in the more recent literature. Several occurrences are described from 

reef, lagoonal and shelf settings, where Alcyonarian spicules contribute up to 5% of the 

sedimentary particles (Matthews, 1966; Stieglitz, 1972; Erez and Gill, 1977; Scoffin and 

Tudhope, 1985; James et al., 1999; Zuschin and Mayrhofer, 2009).  

Small reef like structures are formed by spicules of the genus Sinularia, which occurs in 

Holocene and Pleistocene reef deposits of the western Indo-Pacific (Konishi, 1981) and in the 

Red Sea (Schuhmacher, 1997). Sinularia can form a rigid framework of spiculitic limestone, 

several meters in diameter (Kleypas, 1996).  

Fossil alcyonaria spicules were reported in Pleistocene reef limestones as old as 1 Ma from 

New Caledonia (Cabioch et al., 2008). The probably oldest occurrences were reported from 

the Silurian marls and limestones of Gotland, Sweden (Bengtson, 1981). 

The alcyonarian coral Rhythisma fulvum is a small polyped, flat soft coral colony, mainly 

found in the Red Sea and Great Barrier Reef. Like zooxanthellate corals, R. fulvum possesses 

photosymbionts (Alderslade, 2000). Overgrowing dead and live substrate, they form 

encrusting mats (2-4 mm thin). Octocorals build irregularly arranged spicules of high-Mg 

calcite (~ 13 mole % of MgCO3), within vacuoles of scleroblasts confined by membranes 

(Kingsley and Watabe, 1985; Dunkelberger and Watabe, 1974). This makes R. fulvum a good 
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model organism to study biologically controlled calcification since spicule formation is taking 

place in a confined space, presumably without direct contact to seawater.  

Intracellular calcification is not only used by alcyonarians, but also found in some of the most 

important calcifiers like coccolithophorids, miliolid foraminifera and echinoderms (Weiner 

and Dove, 2003). A general understanding of ion processing during intracellular calcification 

is therefore important, and has the potential to provide clues for proxy applications and carbon 

cycle studies. 

In order to examine induced variations in biogenic calcification a new model organism, R. 

fulvum (Fig. 1) was cultured in natural seawater under controlled laboratory conditions with 

variable temperature and pH. The influence of these parameters on Sr/Ca, Mg/Ca elemental 

ratios as well as Ca, C and O isotope ratios in the Mg-calcite spicules was investigated in this 

study. This is the first culture study on alcyonarian spicule composition. Available data on the 

chemical composition of octocorallian spicules (Chave, 1954; Ohde and Kitano, 1984; 

Carpenter and Lohmann, 1992; Milliman, 1974) are restricted to samples from natural marine 

sites. 

 

2. MATERIAL AND METHODS 

 

2.1. Culturing Setup 

 

Culturing experiments were carried out in Israel at the Hebrew University of Jerusalem, 

Institute of Earth Sciences, in the laboratory of Prof. Jonathan Erez. The alcyonarian soft 

coral, Rhythisma fulvum, originated from the Gulf of Eilat and had been kept in the aquarium 

facilities of Prof. Jonathan Erez. Pieces of 3 cm² were cut off the mother colony placed in a 

plastic petri dish for attachment and returned to the holding tank for recovery.   

 

After five days dishes with firmly attached coral pieces were ready for experimentation. 

These coral pieces had restarted to grow at the edges, covering previously exposed spicules 

(after excising coral pieces). In order to measure the area covered by the corals basal surfaces 

attached to petri dishes of all coral pieces were scanned before and after the experiment. 

Areas were determined by using the freely available software program Image J, calibrated 

using graph paper. The analytical error of this procedure to determine surface areas is smaller 

than 0.1% (n=3, standard deviation). Initial coral colony outlines were marked on the petri 

dishes. Initial and final scans were compared to determine newly grown edges of the corals. 
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In the middle of every dish a plastic spacer was inserted to prevent the magnetic stirring bar 

from touching the coral during the experiment.  Stirring was provided by a magnetic stirrer 

(Model Electronicrührer, Poly 15, Variomag®) with a rate which was set to 350 rpm and at 

which corals fully expanded their polyps. Experimental setup is described in Fig. 2. 

Dishes were placed into 220ml clear Perspex chambers, completely filled with Red Sea 

seawater and closed, to prevent exchange with the atmosphere. Chambers were placed into 

water baths where temperature was regulated by employing a combination of a refrigerated 

bath circulator (Model BL-30, M.R.C. ltd., Israel), cooling water to a stable temperature of 

19°C, and single Immersion thermostat circulators (Model TEP-4, Fried Electric, Haifa, 

Israel) heating individual baths to higher constant temperatures (with a precision of ± 0.3°C). 

Light at an irradiance of 200±8 µmol photons m
-2

 s
-1

 was provided by metal halide lamps in a 

12h/12h light/dark cycle.  

Fresh seawater of the Northern Gulf of Eilat (S=40.7) was obtained from the pier at the 

Interuniversity Institute for Marine Sciences in Eilat (IUI), transported back to Jerusalem, and 

was diluted with deionised water to a salinity of 38. Three different batches of seawater were 

used for experiments T1, T2 and pH, respectively.  This may explain the differences in 

seawater carbonate chemistry between reservoirs (Table 1). The carbonate system was 

manipulated as described below.  

The pH experiments were carried out at a constant temperature of 26°C.  The pH was 

measured using a pH probe, calibrated with a two point calibration using NBS buffers (7.00 

and 9.22). Seawater pH was adjusted using 1 molar HCl or NaOH solutions. Immediately 

after adjusting the pH, seawater was carefully pumped into gastight bags (Emproco LTD) in 

order to reduce exchange with the atmosphere.  The pH in the seawater reservoirs were 

initially set to 7.60, 7.90, 8.20 or 8.50 (NBS scale). During the experiments reservoir pH was 

monitored and showed very little variation (Fig. 3). The pHs in the experimental chambers 

were modified by the corals to average pH values of 8.15±0.02, 8.34±0.07, 8.35±0.06 and 

8.44±0.04, respectively. The pH ranges represent day/night variabilities (1 standard 

deviation). 

Experimental chambers (clear Perspex ®) holding R. fulvum were continuously supplied with 

fresh seawater from gas tight bags (reservoir) using a peristaltic pump (Model ecoline VC, 

Ismatec), which was set to a flow velocity of 2.9 m per hour. Flow rate was 220 ml per day, 

which corresponds to the volume of the experimental chamber. 

Seawater outflows from the experimental chambers were collected in 25 ml conical flasks 

(integrated chamber water), placed in larger beakers to collect overflowing seawater and 
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covered with parafilm to reduce evaporation. During pH experiments, reservoir pH was 

measured at the start and end and twice during the course of the experimental run. Sink pH 

was measured directly in the conical flask at the end of the 12 hour light and dark periods, 

respectively. The results of these measurements are shown in Fig. 3. 

Total Alkalinity (TA) was determined on water samples from the reservoir and the outlet of 

the experimental chamber, which was collected in plastic bottles and pooled. Fluids were 

sampled using a plastic syringes, which were tightly closed and stored below 10°C in the dark 

for chemical analysis. TA was measured using an automatic burette (Radiometer ABU91) at 

the Institute of Earth Sciences, the Hebrew University of Jerusalem, Israel.    

Carbonate speciation of seawater solutions was calculated using the CO2SYS programme by 

Lewis and Wallace (1998) and is presented in Table 1. 

The experiments, all lasting between 17 and 29 days, were carried out in three runs, at 19, 22, 

25, 28°C (T1), at 23, 29, 32°C (T2), and set to different initial pH (pH), but kept at constant 

temperature of 26°C. For all temperature experiments seawater pH of the reservoir was set to 

8.2. Temperatures were monitored during the run of the experiments and varied by ± 0.3°C.   

 

2.2. Analytical Methods 

 

At the end of the experiments, petri dishes with corals were scanned in a computerized 

scanner to determine the final surface area (and to distinguish new growth at the edges) 

covered by coral using the freely available software program Image J. Newly outgrown pieces 

of coral were carefully trimmed off, washed four times with deionised water (Milli-Q water, 

18 MΩ) to remove seawater and dried at 50°C until dry weight was stable.  Organic matter 

was removed from spicules by keeping them in up to 10 ml of diluted sodiumhypochlorite 

(NaOCl, bleach) solution (Sigma Aldrich, 1:5 dilution with Milli-Q water) for 2 hours on a 

rocking table. After bleaching, calcitic spicules were washed 5 times with Milli-Q water and 

transferred into 2 ml pre-cleaned Eppendorf tubes. Tubes were centrifuged for 1 minute at 500 

rpm, supernatant was carefully taken off and remaining spicules dried at 50°C. 

 

2.2.1. Calcification Rates 

 

Calcification rates were determined using the well established alkalinity anomaly technique 

(Chisholm and Gattuso, 1991). This method uses the difference in TA between inflow 

(reservoir) and outflow (pooled chamber water) of the experimental chamber to calculate the 
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amount of precipitated calcium carbonate (CaCO3). Rates were normalised to initial surface 

area and the duration of the experiments. Additionally, we used the surface area of the newly 

grown coral tissue to verify calcification rates determined by the TA method.   

Seven coral pieces grown in the holding tank were used to compare covered surface area with 

their respective total and inorganic dry weights. Area and weight showed a clear linear 

correlation (Fig. 4a).  Bleaching of the coral tissues demonstrated that 66% of the total dry 

weight consists of high-Mg calcite spicules.  This is in agreement with results from Konishi 

(1981).  

At the end of the experiments the mass of high-Mg calcite spicules, determined by the surface 

area method and the TA method were compared. Calcification rates determined by the two 

methods showed no clear correlation (Fig. 4b).  For three experiments the surface area method 

resulted in higher rates than the TA method, possibly indicating variable tissue/spicule ratios 

of R. fulvum grown under different conditions. Since tissue/spicule ratios are variable the 

results of the surface area method are not reliable. We therefore used calcification rates 

determined by the TA method. 

 

2.2.2. Elemental Ratios 

 

Elemental ratios were determined by ICP-OES using a SPECTRO CIROS
CCD

 SOP instrument 

at the Institute of Geosciences, University of Kiel. For sample preparation, about 80 to 120µg 

of the high-Mg calcite spicules were dissolved in 2.2 N ultrapure HCl, dried down and taken 

up in 300µl of ultrapure HNO3. Both acids (p.A. grade, MERCK ®) were doubly distilled 

before use. This solution was kept in closed PFA vials on a hot plate at 110 °C overnight. 

Samples were evaporated to dryness and re-dissolved in a pre-calculated volume of 2% HNO3 

to give a Ca concentration of 1 ppm (± 10 %). This solution was transferred to the ICP-OES. 

An intensity ratio calibration procedure (deVilliers et al., 2002) was applied using a set of 

multi-elemental standard solutions prepared from single-element primary standards (ALFA, 

SPEX) and matrix-matched to 1 ppm Ca. The calibration standards covered the Mg/Ca and 

Sr/Ca range of the high-Mg calcite spicules. Sample introduction comprised 70 s of wash-in 

using a PFA micro-flow-nebulizer (with a sample uptake of 200 µL/min), followed by real 

simultaneous data acquisition during 5 individual measurements with an integration time of 

20 s each. Analytical results represent averages from 5 replicate analyses and were calculated 

from background corrected intensities (i.e., raw counts per second). This procedure uses 
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~ 0.5 ml of sample solution. The procedural blank was below detection limit for Sr, 1% for Ca 

and 3% for Mg.  

Long-term precision was estimated from repeat analyses of an internal “project standard” 

prepared from mixing equal proportions of all sample solutions. No certified standard for 

high-Mg calcite samples is currently available. Repeat analyses of this project standard over a 

period of two hours gave a precision of ±0.5% and ±0.7% (n=4, rel. standard deviation, 

RSD) mmol/mol for Sr/Ca and Mg/Ca, respectively.  

 

2.2.3. Calcium Isotopes 

 

The calcium isotope ratios of high-Mg calcite spicules and seawater Ca were measured with a 

Finnigan Triton TI (Thermal Ionization Mass Spectrometer) following the method described 

in Heuser et al. (2002) and Heuser and Eisenhauer (2008). About 40 to 100µg of the spicules 

were dissolved in 2.2 N ultrapure HCl, dried down and re-dissolved in 2.2 N HCl with a Ca 

concentration of 160 ng/µL. The sample solutions were mixed with a 
43

Ca/
48

Ca double spike, 

with the spike contributing about 90 % of 
48

Ca. 

Calcium samples of the seawater used in the culturing setup and IAPSO seawater standard 

were prepared in a chromatographic clean-up on cation-exchange columns (BioRad) filled 

with MCI Gel (75-100 µm mesh; 0.6 ml). Solutions with 4 µg of Ca, spiked with a 
43

Ca/
48

Ca 

double spike, were loaded on the column. Elution was carried out using 1.5 N HCl. Ca blanks 

for the column chemistry were less than 1 ng per sample (300 ng Ca). Total Ca blanks for the 

isotope analyses were less than 2%. 

About 300 ng of the sample-spike mixtures were loaded with TaCl5 activator on an outgassed 

zone-refined Re filament. Measurements were made on single filaments at a temperature of 

about 1500°C and a typical 
40

Ca signal intensity of 10 V (100 pA). Data acquisition was 

performed in dynamic mode. The acquired data were fractionation corrected online to the 

spike 
43

Ca/
48

Ca ratio of 0.748429 (Gussone 2003) using the exponential fractionation law. 

The double spike correction was carried out with the iterative algorithm described by Heuser 

et al. (2002). 

The isotope values of Ca are reported as δ44/40
Ca (‰) values relative to the NIST standard 

SRM915a, where δ44/40
Ca = [(

44
Ca/

40
Ca)sample/(

44
Ca/

40
Ca)SRM915a - 1]×1000. The samples are 

normalized to the mean 
44

Ca/
40

Ca of four SRM915a analyses, run on the same turret. The 

sample precision is given as two times the standard error of the mean (2SEM = 2SD/n
0.5

) 

determined by repeated measurements of the sample stock solutions. The samples were 
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measured at least twice. The average 2SEM is 0.11 ‰. The spike corrected mean 
44

Ca/
40

Ca of 

NIST SRM915a was 0.021187(2) (standard deviation, n=19). Measurements of the IAPSO 

seawater salinity standard resulted in a 
44

Ca/
40

Ca of 0.021226(5) (n=11). The corresponding 

δ44/40
Ca of IAPSO relative to SRM915a is 1.81±0.13‰ (±2SEM).  

The δ44/40Ca of the Red Sea seawater was determined as 1.82±0.07‰ (±2SEM, n=18). No 

significant differences in δ44/40Ca were found in seawater solutions used in the different 

experiments. This mean seawater value is identical within error with the IAPSO seawater 

standard δ44/40Ca (1.81±0.13‰) and the mean seawater value δ44/40Ca = 1.88±0.04‰ reported 

by Hippler et al. (2003). 

 

2.2.4. Oxygen and Carbon Isotopes 

 

Oxygen and carbon isotopes of the spicules were analyzed at IFM-GEOMAR, Kiel, on a 

Finnigan MAT 252 equipped with a Kiel II device. Reproducibility (1SD) for δ18O and δ13C 

is ±0.05‰ and ±0.02‰, respectively. Oxygen and carbon isotope values are reported relative 

to V-SMOW and V-PDB, respectively, in the common δ-notation. 

Samples of the seawater used during the culturing were analysed for oxygen and carbon 

isotopic composition. Sample preparation was the same as described for DIC sampling.  

The δ18
O contamination by the HgCl2- poisoning is less than -0.05‰. Chamber water for 

isotope analysis was available only from one experiment (T1-4), resulting in δ18
O = 1.61‰ 

(V-SMOW) and δ13
C = -1.45‰ (V-PDB).  These values were used to calculate oxygen and 

carbon isotope fractionation between fluid and spicules in all experiments. 

Oxygen isotopes were analyzed on 0.5 ml sub-samples at the Leibniz Laboratory, Kiel, 

applying the CO2-water isotope equilibration technique using a Finnigan gas bench II unit 

coupled to a Finnigan DeltaPlusXL (Bauch et al., 2005). CO2 for carbon isotope 

determination of DIC was extracted and measured as described by Erlenkeuser et al. (2003). 

The average precision for δ18
O and δ13

C is ± 0.06‰ (1SD) calculated from repeated sample 

measurements.  

 

3. RESULTS 

 

3.1. Calcification Rate 
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Results of our measurements are presented in Table 2 and shown in Fig. 5. Calcification rates 

for R. fulvum measured as the amount of CaCO3, normalized to the area of the initial coral 

piece (µmol/cm²/d), show a dependence on temperature, but not on pH, [HCO3
-
] or [CO3

2-
]. 

Calcification generally increased with temperature from 19 to 29°C. The observed rates range 

from 0.8 to 5.6 µmol/cm²/d (Fig. 5). From the change in total alkalinity and average spicule 

weight (0.02mg) we calculate a formation rate of about 25 spicules per day per cm² at 

maximum growth rate. The reduced calcification rate found at the highest temperature (32°C) 

was possibly caused by bleaching.  The coral in this experiment was paler than the others and 

bleaching (loss of photosymbionts) is known to curb zooxanthellate coral calcification 

(Fujimura et al., 2001).  

Instantaneous calcite precipitation rates – the amount of calcite precipitated per unit area of 

crystal surface per time – cannot be determined, because the coral calcification rates 

(µmol/cm²/d) are averaged over the total duration of the experiment. Thus, higher coral 

calcification rates could indicate that more spicules were built per unit area of coral tissue, but 

the calcite precipitation rate for each spicule remained constant. 

 

3.2. Trace Element Ratios (Mg/Ca, Sr/Ca) 

 

Results of elemental ratio measurements are presented in Table 2. The Mg/Ca ratio in cultured 

R. fulvum spicules ranges from 146 to 164 mmol/mol (12.7 – 14.1 mol% MgCO3) and shows 

a positive and significant correlation with temperature (Fig. 6a). 

 

Mg/Ca(mmol/mol) = 1.03±0.43 * T(°C) + 129.6±11.1; R²=0.95; n=5; p=0.0047  (1) 

 

Mg/Ca ratios also show a correlation with pH. A regression of Mg/Ca and pH results in a 

positive trend that is, however, only significant at the 90% level. 

 

Mg/Ca(mmol/mol) = 18.1±22.8 * pH - 1.4±189.8; R²=0.85; n=4; p=0.076  (2) 

 

A significant dependence of Mg/Ca ratios on carbonate ion concentrations ([CO3
2-

]) is shown 

by the resulting regression (Fig. 6b): 

 

Mg/Ca(mmol/mol) = 0.030±0.019 * [CO3
2-

] + 140.5±5.6; R²=0.96; n=4; p=0.022 (3) 

 



                                                                                                                                          10 

Sr/Ca in R. fulvum ranges from 2.5 to 2.9 mmol/mol. The temperature response of Sr/Ca in R. 

fulvum shows a weak, but significant inverse dependence (Fig. 6c):  

 

Sr/Ca(mmol/mol) = -0.0116±0.0072 * T(°C) + 3.13±0.18; R²=0.90; n=5; p=0.014 (4) 

 

We consider the data point of the 22°C experiment to be an outlier. The sample was probably 

contaminated with old spicules grown in the holding aquarium before the start of the 

experiment. Seawater of this holding tank was depleted in Sr/Ca ratio by about 35%. Twenty 

percent contamination by spicules grown in this seawater is sufficient to explain the measured 

low value. 

Sr/Ca also increases with increasing pH and carbonate ion concentration (Fig. 6d). However, 

given the limited data set (n =4) the effect of either parameter on Sr/Ca in R. fulvum is not 

resolvable with statistical significance as shown in Eqs. (5) and (6). 

 

Sr/Ca(mmol/mol) = 0.69±0.75 * pH – 3.1±6.2; R²=0.89; n=4; p=0.058   (5) 

 

Sr/Ca(mmol/mol) = (11±12)*10
-4

 * [CO3
2-

] + 2.31±0.33; R²=0.89; n=4; p=0.056  (6) 

 

Two of the pH treatments had almost identical seawater pH values (8.34 and 8.35). However, 

we found significantly different Mg/Ca and Sr/Ca ratios between these treatments (t-test, 

p=0.0017 and p=0.0164, respectively). This suggests that additional factors besides pH are 

controlling Mg/Ca and Sr/Ca incorporation. There is no simple dependence of either Mg/Ca 

or Sr/Ca ratios on calcification rates (Fig. 7, Table 2). 

 

3.3. Calcium Isotope Ratios 

 

Calcium isotope ratios show a range in δ44/40Ca of 0.69 ‰ to 0.88‰ (Fig. 8, Table 2). We 

observe no significant response to temperature of Ca isotope fractionation: 

 

δ44/40
Ca = (-5±11)*10

-3
 * T(°C) + 0.9±0.3; R²=0.43; n=5; p=0.23    (7) 

 

However, δ44/40
Ca has a weak, but significant inverse dependence on pH: 

 

δ44/40
Ca = -0.64±0.63 * pH + 6.1±5.3; R²=0.90; n=4; p=0.049    (8) 
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Ca isotope fractionation demonstrates no significant trend with respect to [CO3
2-

] (R²=0.74; 

p=0.14) and calcification rate (R²=0.71; p=0.16). 

 

3.4. Carbon and Oxygen Isotopes 

 

Measured oxygen isotope values show a range in δ18
O (VSMOW) of 34.0‰ to 31.6‰ for a 

temperature interval of 22 to 32°C (Table 3, Fig. 9a) and are significantly inversely correlated 

to temperature. Neglecting two outliers (23 and 29°C), we calculate the following regression: 

 

1000 ln(
18α) = -0.15±0.03 * T(°C) + 35.0±0.9; R²=0.97; n=6; p=0.0003   (9) 

 

pH has no significant influence on δ18
O (R²=0.39; p=0.26). The two outliers could result from 

removal of organic matrix by hypochlorite bleaching.  

Carbon isotope values (δ13
C) range from -4.2‰ to -0.3‰ (VPDB) (Table 3, Fig. 9b) and 

show a positive correlation with temperature. Considering the δ13
C of the chamber water of -

1.45‰ the carbon isotope fractionation ranges from -2.7 to +1.1‰. Neglecting the two 

outliers (23 and 29°C) deviating from the δ18
O-temperature trend, we calculate the following 

regression: 

 

1000 ln(
13α) =  0.201±0.044 * T(°C) – 7.07±1.17 ;R²=0.98; n=6; p=0.0002  (10) 

 

Again, there is no significant pH effect on the isotopic composition (R²=0.03; p=0.77). 

Carbon and oxygen isotope fractionation are inversely correlated: 

 

1000 ln(
13α) =  -1.49±0.44 * 1000 ln(

18α) + 45.0±13.7; R²=0.83; n=13; p<0.0001 (11) 

 

4. DISCUSSION 

 

4.1. Biomineralization in Octocorallia  

 

Spicules in Octocorallia are built within spicule vacuoles in specialized cells, the so-called 

scleroblasts (Dunkelberger and Watabe, 1974). Hence calcification takes place intracellularly 

in a confined space with no direct contact to seawater (Dunkelberger and Watabe, 1974; 
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Kingsley and Watabe, 1985; Fig. 10). This intracellular calcification mode creates special 

boundary conditions for the uptake of cations and their subsequent fate: (1) the cations used 

for calcification have to pass through at least two membranes and through the cell plasma, 

which may require active ion transport mechanisms. (2) As spicule formation occurs in a 

confined space, there is no free exchange of cations with bulk seawater. On the other hand 

exchange with the surrounding medium is a precondition for the expression of fractionation 

processes during precipitation. Consequently, intracellular calcification should result in 

different elemental and isotope partitioning compared to calcification in open systems. 

Selective ion uptake and isotope fractionation during the interaction of cations with proteins 

and organic matrices can be expected. Significant Rayleigh distillation effects can occur if 

ions in the calcifying fluid are partly used for calcification and partly returned to the seawater. 

 

4.2. Biogeochemistry of Intracellular Calcification 

 

With respect to cation processing coccolithophorids are currently the best studied example of 

intracellular calcification (Brownlee et al., 1995; Brownlee and Taylor, 2004; Stoll and Ziveri, 

2004). Consequently, they represent a potentially informative analogue to alcyonarian spicule 

calcification. Element and isotope partitioning during coccolith formation should be 

comparable to alcyonarian spicule formation, or may at least provide a baseline for 

interpreting the chemical and isotopic composition of the spicules. 

Coccolith Sr/Ca and Mg/Ca ratios, as well as calcium, oxygen and carbon isotopes have been 

the subject of a number of detailed studies (Stoll et al., 2002; Stoll and Ziveri, 2004; Rickaby 

et al., 2002; Langer et al., 2006, 2007, 2009; Gussone et al., 2006, 2007; Müller et al., 2011). 

Most coccolithophorids precipitate low-Mg calcite, but some species have been found to build 

high-Mg calcite coccoliths (Stanley et al., 2005). Coccolith Mg/Ca ratios appear to have a 

similar temperature dependence as the low-Mg calcite of planktic foraminifera (Stoll et al., 

2001). Oxygen isotopes show a temperature dependence very similar to inorganic calcite. 

However, for some species δ18
O was found to be significantly higher than expected for 

isotopic equilibrium. The same species show higher than average carbon isotope values, 

which results in a positive correlation of carbon and oxygen isotopes (Stoll and Ziveri, 2004). 

Calcium isotopes in coccoliths are lighter than expected  compared to inorganic calcite but 

show a similar temperature dependence (Gussone et al., 2006). Sr/Ca ratios are higher than 

expected for inorganic calcite but display only minor temperature dependency. They have 
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been shown to be strongly connected to coccolithophorid productivity (Stoll and Schrag, 

2000).  

None of these chemical and isotopic signatures is an unequivocal indicator of intracellular 

calcification and related biological processes. In fact, for some of them alternative models 

based on inorganic and biologic mechanisms have been proposed. For instance, to explain the 

strong correlation between productivity and coccolith Sr/Ca ratios, Stoll et al. (2002) 

suggested a purely inorganic kinetic process. Calcification rates influence Sr/Ca ratios by 

entrapping a Sr enriched layer at the crystal surface (surface entrapment sensu Watson and 

Liang, 1995). An alternative model based on a purely biological mechanism was proposed by 

Rickaby et al. (2002). They suggested a rate dependent discrimination of Sr in Ca channels. 

The Ca channels are necessary for the selective trans-membrane uptake of Ca into the cell and 

discriminate Sr
2+

 ions to a certain extent. Langer et al. (2006, 2009) introduced another 

biological model based on the limited transport capacity of ion channels in cellular 

membranes. They suggested that most Ca transported to the calcifying vesicle is immediately 

taken up by the growing crystal, resulting in a vesicle fluid slightly supersaturated with 

respect to calcite. Consequently [Ca
2+

] is tightly coupled to [CO3
2-

]. In order to explain the 

correlation between Sr/Ca ratios and productivity they assumed a coupling between nitrogen 

availability and DIC uptake, thus controlling [CO3
2-

], which in turn leads to regulation of 

[Ca
2+

] in the vesicle and therefore indirectly affecting the Sr/Ca ratio in the calcifying fluid. 

This model has consequences for the interpretation of Ca isotopes in coccoliths. Because all 

of the Ca transported into the cells is used for calcification, there can be no isotope 

fractionation in the vesicle. On the other hand coccoliths are significantly enriched in light Ca 

isotopes with respect to seawater. Gussone et al. (2006) therefore suggested that the observed 

isotope fractionation occurs during the ion transport, most likely at the membrane ion 

channels, and is therefore not reflecting any of the inorganic processes of crystal precipitation. 

If intracellular calcification imprints a typical chemical and isotopic pattern on skeletal 

elements we would expect a similar behaviour of trace elements and isotopes in coccoliths 

and alcyonarian spicules. Of course there are differences between coccolithophorids and 

alcyonarian corals that must be taken into account when comparing the skeletal composition 

of the two taxa. First, the mineralogy is different. Alcyonaria spicules are made of high-Mg 

calcite, while most coccoliths consist of low-Mg calcite with very low Mg concentrations 

(Stoll et al., 2001). Obviously alcyonarians do not strictly control the flux of Mg ions into the 

scleroblasts. In this regard they behave similar to miliolid foraminifera, which also precipitate 

high-Mg calcite intracellularly (Erez, 2003). The lack of selectivity against Mg may point to 



                                                                                                                                          14 

ion transport in vesicles to the site of calcification (Kingsley and Watabe, 1985). Fractionation 

of Ca isotopes may occur during transport to the calcification site as suggested by Gussone et 

al. (2006) and could be different for ion channel transport and vesicle transport. Second, while 

coccolithophores are unicellular, alcyonarian corals are multicellular organisms. Therefore the 

scleroblasts of alcyonarians which are located in the mesoglea are not in direct contact with 

seawater (Fig. 10). Ions for calcification have to be transported through the epithelia and the 

mesoglea, which may cause additional isotope fractionation and elemental discrimination. 

The Sr/Ca ratios may show a similar behaviour in the two taxa if this ratio is controlled 

mainly by the ion transport and [CO3
2-

] as suggested by Langer et al. (2006) (see previous 

paragraph). In the following section we will discuss the measured elemental and isotopic 

ratios and possible inorganic and biological mechanisms. 

 

4.3. Elemental ratios 

 

4.3.1. Mg/Ca Ratios 

 

Published element analyses on spicules of Octocorallia are mainly from Gorgoniacea with 

some additional data from Pennatulacea and Alcyonacea (soft corals) (Chave, 1954; Ohde and 

Kitano, 1984; Carpenter and Lohmann, 1992; Thresher et al., 2007). They showed Mg/Ca 

ratios in the range of 140 to 175 mmol/mol and 150 to 185 mmol/mol for Gorgoniacea and 

Alcyonacea, respectively. The measured ratios of R. fulvum lie in this range.  From Fig. 11 it 

can further be seen that the observed Mg/Ca values in R. fulvum are in general accord with 

other biotic and also abiotic high-Mg calcites. In contrast Bond et al. (2005) found much 

higher magnesium concentrations in the gorgonian coral Plexaurella dichotoma.  However, 

these values were measured in the axial skeleton and not in spicules. 

Natural cements (Videtich, 1985) show consistently higher Mg/Ca ratios than experimental 

calcites (Mucci, 1987). Rimstidt et al. (1998) explained this variability with kinetic effects 

during crystal growth. Consequently, the variability of biogenic high-Mg calcites does not 

necessarily imply a biological influence, but could also be caused by crystal growth kinetics.  

The Mg/Ca ratios of R. fulvum and their temperature sensitivity are best compared to benthic 

miliolid and rotaliid foraminifera (Toyofuku et al., 2000), which show a linear temperature 

trend (Fig. 11). Mg/Ca ratios of R. fulvum increase by 0.7%/°C, which is one order of 

magnitude lower than the 8±3%/°C observed in the planktic foraminifera Globigerinoides 

ruber (white) (Kısakürek et al., 2008) and the ~6%/°C observed in coccoliths (Stoll et al., 
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2001). However, it is close to the 2%/°C increase in inorganic calcite (Mucci, 1987). This is 

in line with the high Mg content of the spicules that indicates a less strict biological control 

over cation transport in contrast to planktic foraminifera and most coccoliths (Stanley et al., 

2005). 

In our pH experiments we observed a 5.5±3.7 mmol/mol increase in the Mg/Ca ratio while pH 

increased by roughly 0.3 units and the carbonate ion concentration doubled (Fig. 6b). The 

influence of seawater pH and carbonate chemistry on the incorporation of Mg into inorganic 

calcite has been discussed controversially in several studies: 

Based on data from stoichiometric dissolution experiments Thorstenson and Plummer (1977) 

estimated the thermodynamic properties of high-Mg calcites (HMC). They concluded that the 

Mg content of naturally-occurring marine HMC should primarily be governed by the seawater 

supersaturation state (i.e. [CO3
2-

] at constant [Ca
2+

]). However, they calculated a ten times 

stronger Mg/Ca increase with rising saturation than what we observed in the alcyonarian 

spicules. Saturation state and precipitation rates were further discussed as possibly influencing 

Mg incorporation into calcite by Given and Wilkinson (1985). 

In contradiction to these papers, several experimental studies showed that the Mg/Ca partition 

coefficient in inorganic calcite is independent of the carbonate ion concentration and of 

precipitation rate (e.g. Mucci et al., 1985; Burton and Walter, 1991; Hartley and Mucci, 

1996). Burton and Walter (1991) found no systematic change in the Mg/Ca ratios of calcite 

precipitated in seawater with carbonate ion concentrations ranging from 250 to 1000 µM. On 

the other hand, they observed a positive correlation of calcite Mg/Ca ratios with seawater pH. 

However, in very similar experiments Hartley and Mucci (1996) could not reproduce this pH 

dependence.  

In the pH-stat experiments of Burton and Walter (1991) Mg/Ca ratios increased linearly by 

about 30 mmol/mol/pH unit as pH increased from 7 to 9. This Mg/Ca-pH trend is compatible 

with the 18±12 mmol/mol/pH unit increase observed in our experiments. Therefore all our 

observations of Mg/Ca partitioning in R. fulvum can be explained in principle by inorganic 

mechanisms and open system behaviour. This is in clear contrast to the intracellular calcite 

formation of coccolithophorids, which shows a strict biological control of Mg incorporation. 

Mg uptake and processing probably follows different pathways in Alcyonarians and 

coccolithophorids. 

 

4.3.2. Sr/Ca Ratios 
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Published Sr/Ca ratios of Octocorallia range from 2.1 to 2.3 mmol/mol and 2.6 to 3.0 

mmol/mol for Gorgoniacea and Alcyonacea, respectively (Ohde and Kitano, 1984; Carpenter 

and Lohmann, 1992; Thresher et al., 2007). This is in good agreement with the measured 

range of R. fulvum.  

In experimental observations Tang et al. (2008a) found a possible pH dependence for the Sr 

incorporation into inorganic calcite, similar to pH controlled Mg incorporation in the 

experiments by Burton and Walter (1991). Tang et al. (2008a) suggested that pH controls the 

cation adsorption capacity at the crystal surface and therefore increasing pH could enhance 

the incorporation of foreign cations into calcite. In accordance with these observations, 

spicule Sr/Ca ratios also show an increasing trend with rising pH in our experiments (Fig. 6d), 

albeit this trend is only significant at a 94% level. The incorporation of Sr in inorganic calcite 

depends on precipitation rate (Tang et al., 2008a; Lorens 1981; Tesoriero and Pankow, 1996), 

which is controlled by [CO3
2-

] (Zhong and Mucci, 1989). The observed increase in Sr/Ca in R. 

fulvum with [CO3
2-

] (Fig. 6d) is therefore compatible with the experiments of Tang et al. 

(2008a). Based on the nature of our experimental setup, it is not possible to distinguish 

whether pH or [CO3
2-

] is the controlling factor for strontium incorporation. Nevertheless, 

both, pH and [CO3
2-

] control on Sr/Ca ratios, can be explained by inorganic processes (Tang 

et al., 2008a). 

The weak temperature dependence of DSr (strontium distribution coefficient) in R. fulvum (-

0.0013/°C) agrees well with experimental data of inorganic calcites (Fig. 12), precipitated at 

rates typical for corals, being in the order of 10
4
 µmol/m

2
/h. DSr, R.fulvum of about 0.3 is slightly 

higher than DSr, inorg.(<0.2) measured by Tang et al. (2008a) on inorganic calcite. The slightly 

higher R. fulvum value can be explained by the high magnesium concentration, straining the 

calcite lattice, allowing easier incorporation of large Sr ions (Mucci and Morse, 1983; Ohde 

and Kitano, 1984; Cicero and Lohmann, 2001). The elevated Sr incorporation therefore 

represents a purely inorganic effect.  

 

4.3.2.1. Sr/Ca ratios, calcification rate and precipitation rate  

 

Various authors have shown that Sr partitioning in inorganically precipitated calcite is 

positively correlated with precipitation rate – the amount of calcium carbonate precipitated 

per area of crystal surface per time (e.g. Lorens, 1981; Tesoriero and Pankow, 1996; Nehrke 

et al., 2007; Tang et al., 2008a). However, in our experiments Sr/Ca clearly decreases with 

temperature (Fig. 6c) although the corals grew faster at higher temperatures up to 27°C (Fig. 
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5) and although higher precipitation rates can be expected with increasing temperatures. This 

apparent discrepancy can be reconciled by the assumption that the coral calcification rate 

(µmol of CaCO3/cminitial coral piece
2
/d) in the temperature experiments (Fig. 5) represents the 

number of spicules formed during a certain period of time. Obviously, controlled by the 

metabolism, at higher temperature more spicules are formed during the same period of time 

when compared to cooler temperatures, without changing the precipitation rate of the single 

spicule. The higher frequency of spicule formation does not necessarily mean that the 

precipitation rate has to be changed. If this model is correct the calcification rate and the 

spicule precipitation rate are decoupled. Following this approach it can be assumed that 

during higher temperatures more spicules are formed without changing the precipitation rate 

of the individual spicule. This would reconcile our discrepant observations from Figs. 5 and 

6c, respectively. Presumably, precipitation rates tend to vary very little as a function of 

different temperatures but much more as a function of the external seawater pH or [CO3
2-

] as 

it can be seen from Fig. 6d. In these latter experiments the increase of the Sr/Ca ratios with 

pH can be explained as a precipitation rate effect (Tang et al., 2008a). Like for Mg, Sr 

incorporation in R. fulvum spicules can be explained by inorganic processes. Again, this is in 

contrast to coccolithophorids, where enhanced Sr uptake is best explained by biological 

controls. The investigated elements obviously show equivocal behaviour during intracellular 

calcification. 

 

4.4. Stable Isotope Ratios 

 

4.4.1. Oxygen Isotopes 

 

The observed oxygen isotope temperature dependence of R. fulvum is in good agreement with 

the temperature slope for inorganic calcite (Kim and O’Neil, 1997). However, R. fulvum 

spicules show about 1‰ higher δ18
O values than inorganic calcites formed at the same 

temperatures.  It has been shown by Jiménez-López et al. (2004) and Tarutani et al. (1969) 

that the incorporation of magnesium in the calcite lattice changes the vibrational frequencies 

of the carbonate ions and thereby increases oxygen isotope fractionation. However, even 

considering this effect the offset of the oxygen isotope values of R. fulvum spicules is much 

larger than expected for inorganic calcite in isotopic equilibrium (Fig. 9a).  

A similar offset from oxygen isotopic equilibrium was observed in some coccolithophorid 

species (Stoll and Ziveri, 2004). These authors suggested that a small part of the offset could 
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be explained by the carbonate ion effect, i.e. the negative correlation between [CO3
2-

] and 

δ18
O first observed by Spero et al. (1997) and interpreted by Zeebe (1999). This effect would 

imply a low pH at the calcification site, which is quite unlikely, as most studies so far show 

high pH values in the calcifying medium (Al-Horani et al., 2003; de Noojier et al., 2009). 

Recent studies have suggested that experimental calcite does actually not reflect isotopic 

equilibrium but is depleted in 
18

O due to kinetic effects (Dietzel et al., 2009; Day and 

Henderson, 2011). Coplen (2007) found calcite in equilibrium with respect to oxygen isotopes 

to be enriched in δ18
O by 1.5 ‰. Therefore, the high R. fulvum δ18

O values measured in 

calcite may well be interpreted to be in isotopic equilibrium with seawater. Alternatively, our 

observations may be explained by preferred incorporation of a certain amount of HCO3
-
 

instead of CO3
2-

 during calcite precipitation, which may increase the δ18
O values, because 

HCO3
-
 is enriched in δ18

O by about 7 ‰ (at 25°C) compared to CO3
2-

 (Kim et al., 2006). 

However, equilibration of oxygen isotopes is a very slow process, in the order of several 

hours (McConnaughey, 1989), and CO3
2-

 is by far the dominant carbonate species to be 

incorporated into calcite forming in seawater (Kim et al., 2006). These obstacles may be 

overcome by additional biological mechanisms, e.g. reactions assisted by the enzyme 

carbonic anhydrase (Kingsley and Watabe, 1987). We therefore speculate that the heavy δ18
O 

values found in R. fulvum can be explained by a biological control on the oxygen isotope 

equilibration time and on the carbonate precipitation mechanism (Silverman et al., 1973; 

McConnaughey et al., 1989).  

 

4.4.2. Carbon Isotopes 

 

Except for the two outliers at 23 and 29°C (samples not fitting the δ18
O-temperature trend) 

carbon isotopes are fractionated by -2.7 to -0.8‰ (Fig. 9b). This is slightly lower than 

expected for inorganic precipitation (+1‰, Romanek et al., 1992 for LMC; 1.3±0.1‰, 

Jiménez-López et al., 2006 for HMC). The latter difference can be explained by the 

incorporation of isotopically light CO2 originating from respiration. The latter could cause the 

temperature dependence (Fig. 9b) if at higher temperatures less metabolic CO2 but more 

heavy seawater carbon is incorporated. 

Alternatively, the temperature dependent variation of carbon isotopes might be interpreted as 

a kinetic fractionation effect, indicating a change in precipitation rate with temperature. 

Nonetheless, as already discussed under Section 4.2.2, Sr/Ca ratios indicate constant 

precipitation rates in all temperature experiments. Additionally, Sr/Ca ratios in the pH 
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experiments imply variable precipitation rates (Fig. 6d), but we observe no corresponding 

trend in the δ13
C values (Table 3). Therefore we exclude kinetic fractionation as an 

explanation for the observed temperature dependence of δ13
C. This is further corroborated by 

the inverse correlation between oxygen and carbon isotopes (Fig. 9c), contrasting the 

positively correlated kinetic isotope fractionation observed in scleractinian corals and 

inorganic carbonates (McConnaughey, 1989; Adkins et al., 2003) as well as in the axial 

skeleton of gorgonians (Hill et al., 2011). 

 

4.4.3. Calcium Isotopes 

 

Calcium isotopes measured in R. fulvum are on average lighter than values from inorganic 

calcite precipitated at intermediate rates (Fig. 13a). Kısakürek et al. (2011) recently showed 

that in planktic foraminifera this phenomenon can be explained by the effect of high calcite 

precipitation rates, based on the observation of Tang et al. (2008b) that Ca isotope 

fractionation in inorganic calcite is strongly precipitation rate dependent.  

The Ca isotope fractionation of R. fulvum agrees with that of planktic foraminifera. In 

addition, the inverse correlation between Ca isotopes and Sr/Ca ratios (Fig. 14), previously 

observed in inorganic calcites (Tang et al., 2008b) further supports the inorganic controls on 

the element and isotope partitioning. 

Similar to this inorganic mechanism explaining Ca isotope fractionation in R. fulvum most 

observations on elemental ratios and oxygen isotopes point to inorganic processes taking 

place in an open system where free exchange between crystal and a large volume of seawater 

is possible. However, this is in contradiction to the intracellular mode of calcification in 

alcyonarians where the calcification in a vesicle prohibits free exchange with the ambient 

seawater. Consequently, we have to consider which biological controls could alternatively 

explain the observed element and isotope partitioning.  

Despite the fact that fractionation processes in planktic foraminifera and R. fulvum could be 

explained by an inorganic control - precipitation rate - it is striking that many more calcifying 

organisms (e.g. coccolithophorids, scleractinian corals) irrespective of their CaCO3 

polymorph exhibit a Ca isotope fractionation intermediate between aragonite and calcite (Fig. 

13a). Spicules of R. fulvum are made of a high Mg-calcite, however the mean Δ44/40
Ca (-1.05 

± 0.06 ‰, 2SD) is identical within error with the mean value measured for Acropora sp. (-

1.10 ± 0.19 ‰), an aragonitic scleractinian coral (Fig. 13a). This latter Δ44/40
Ca value has been 
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interpreted by biological fractionation (Böhm et al., 2006), probably caused by transport 

through the coral tissue – a biological control.  

A biological control of Δ44/40
Ca in R. fulvum is further supported by the inverse correlation 

between Δ44/40
Ca and [CO3

2-
] (Fig. 13b). Gussone et al. (2007) explained a similar correlation 

in E. huxleyi by metabolic effects. The increased utilisation of isotopically heavy cellular Ca 

reservoirs at lower calcite supersaturation leads to heavier δ44/40
Ca in the coccolith. Another 

metabolic effect was used by Kisakürek et al. (2011) to explain the positive Δ44/40
Ca - [CO3

2-
] 

correlation of G. ruber. In this foraminifer, vacuolisation of low pH seawater used for 

calcification requires increased H
+
/Ca

2+
 exchange to reach the desired calcite saturation state 

in the vacuole. Kinetic isotope fractionation at the H
+
/Ca

2+
 exchanger leads to preferential 

uptake of light Ca isotopes into the vacuole. This process lowers the δ44/40
Ca ratio in the 

vacuole at high H
+
/Ca

2+
 exchange rates (low external pH, low [CO3

2-
]), leading to the 

observed positive Δ44/40
Ca - [CO3

2-
] correlation in the foraminifera. This variable response of 

Δ44/40
Ca to [CO3

2-
] variations, in foraminifera on the one hand and in coccoliths and 

alcyonarians on the other hand (Fig. 13b), is difficult to explain with simple inorganic 

processes, but rather indicates biological mechanisms. If the two models described above can 

be confirmed, the sign of a Δ44/40
Ca - [CO3

2-
] correlation can be used to distinguish between 

different calcification strategies. The inverse correlation observed in R. fulvum spicules could 

indicate the presence of a calcium reservoir that is increasingly used for calcification at lower 

external [CO3
2-

]. 

In alcyonarians this reservoir may be represented by amorphous calcareous granules 

(Kingsley and Watabe, 1985). They may represent amorphous calcium carbonate (ACC). 

ACC is known to be significantly enriched in heavy Ca with respect to calcite or aragonite 

(Niedermayr et al., 2010; Gagnon et al. 2010). 

 

4.4.4. Correlation between Sr/Ca Ratios and Calcium Isotope Fractionation 

 

A biological mechanism may further be necessary to explain the positive correlation of Sr/Ca 

ratios and [CO3
2-

] in R. fulvum spicules (Fig. 6d). The inorganic mechanism discussed in 

Sections 4.2 and 4.3.2 requires a free exchange of ions between the site of calcification and a 

large fluid reservoir (as compared to the mass of the precipitate). However, ion exchange 

during spicule formation in R. fulvum is strictly controlled by the cell and vesicle membranes.  

Langer et al. (2006, 2009) discussed a biological mechanism for Sr/Ca partitioning in 

coccolithophorids where [Ca
2+

] in the calcifying vesicle is limited by the pumping capacity of 
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the ion channels and hence inversely coupled to [CO3
2-

] by the calcite supersaturation in the 

calcifying fluid. In contrast to [Ca
2+

] the [Sr
2+

] is largely independent of the latter. 

Consequently Sr/Ca ratios increase with increasing [CO3
2-

] due to a decrease of [Ca
2+

] 

because of increased calcite precipitation.  

We suggest that a very similar mechanism controls Sr/Ca partitioning in the calcifying 

vesicles of R. fulvum as well. In combination with the [CO3
2-

] - Δ44/40
Ca relationship this 

results in the inverse correlation between Sr/Ca ratios and Δ44/40
Ca (Fig. 14). A similar 

correlation was observed in coccoliths by Müller et al. (2011). Hence, the correlation between 

Sr/Ca ratios and Δ44/40
Ca is not necessarily an indication of the inorganic, open-system 

mechanism described by Tang et al. (2008b) for calcite precipitation experiments. Biological 

mechanisms can mimic the kinetic behaviour of elemental and isotope ratios observed in these 

experiments and explain similar correlations in coccoliths and R. fulvum. 

 

5. CONCLUSIONS 

 

1) As indicated by measured elemental/isotopic proxies and long term calcification rates, 

calcite precipitation rate and spicule formation rate in Rhythisma fulvum are decoupled.  

2) Mg/Ca ratios in Alcyonarian spicules can potentially be used as [CO3
2-

] and temperature 

proxy. Precision of Mg/Ca measurements allows to reconstruct temperature and [CO3
2-

] to a 

precision of 1°C and 30 µmol/kg, respectively.  

3) Alcyonarian spicules show a similar Ca isotope fractionation as scleractinian corals 

irrespective of the mineralogy. This can be interpreted by biologically mediated CaCO3 

precipitation obscuring the pure mineralogical effects on Ca isotope fractionation. The 

biologically induced Ca isotope fractionation is most likely due to the discrimination of heavy 

isotopes during transport through Ca selective cellular pathways (Gussone et al., 2006; Böhm 

et al., 2006).  

4) Interpretations of the partitioning effects during cation uptake are equivocal and can be 

explained by biological as well as inorganic processes. Resolving this ambiguity requires a 

better understanding of Alcyonarian calcification and cation transport.  

5) As shown by the discussion of cation uptake in intracellular calcification, biological 

mechanisms can mimic the effects of inorganic processes on element and isotope ratios. 
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Figure captions 

 

Fig. 1: Micro-photographs of Rhythisma fulvum colony. a) Circular polyps with retracted 

tentacles. White objects in connecting tissue are high-Mg calcite spicules. b) Detail from 

lower left of (a). Inset shows polyp with extended tentacles. Spicules extending from the 

tissue are visible in the circled area. c) Isolated spicules consisting of high-Mg calcite. 

 

Fig. 2: Experimental setup used in temperature and pH experiments for culturing R. fulvum. 

Inset on the left shows top view of the chamber with coral piece on the left and magnetic 

stirring bar on the right. 

 

Fig. 3: Seawater pH in the Reservoir and representative example of day/night pH in 

experimental Chamber for the four pH experiments (a-d).  Reservoir pHs were measured four 

times during the experiments, but are plotted separately for clarity. No measurements were 

taken between the 8th and 10th of March.  

 

Fig. 4: Covered surface area of R. fulvum in correlation with its respective dry weight. a) total 

dry weight is indicated by filled symbols, whereas empty symbols represent data for inorganic 

dry weight. b) Correlation between newly built spicules calculated by change in covered area 

and change in total alkalinity. Bold line indicates a 1:1 ratio between the two methods. Error 

bars indicate ±SEM (n=3). Error bars on ‘changes in surface area’ are smaller than symbols. 

 

Fig. 5: Growth rates of R. fulvum in response to temperature calculated from change in total 

alkalinity and normalised to initial covered area, which is a proxy of coral biomass. Error bars 

on temperature and growth rates denote maximum range of changes in water baths and 

±SEM, respectively. 

 

Fig. 6: Elemental ratios of R. fulvum spicules. a) Mg/Ca ratios plotted against temperature and 

(b) calculated carbonate ion concentration from pH experiments; c) Sr/Ca ratios plotted 

against temperature and (d) calculated carbonate ion concentration from pH experiments. 

Element ratio error bars represent ±2SD from repeated measurements (n=4) of project 

standard (section 2.2.2). Error bars on temperature denote maximum range of changes in 

water baths. Error bars on [CO3
2-

] show the maximum range calculated from pH day/night 

fluctuations and precision of TA measurements. Outlier in lower left panel was not included 

in regression calculation. Sampling material was probably contaminated with old sample 
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grown before experiment (see text). Labels close to symbols indicate corresponding pH values 

of seawater.  

 

Fig. 7: Mg/Ca ratios plotted against calcification rates in R. fulvum. Error bars on Mg/Ca 

represent ±2SD from repeated measurements (n=4) of project standard. Error bars on 

calcification rates denote ±SEM. 

 

Fig. 8: Calcium isotope ratios of R. fulvum spicules plotted against (a) temperature and (b) 

pH.  Error bars on Ca isotopes represent ±2SEM. Error bars on temperature and pH denote 

maximum range of changes in water baths and day/night fluctuations of pH in the chambers 

(1SD), respectively. Numbers next to symbols represent corresponding [CO3
2-

] in seawater. 

 

Fig. 9: Temperature dependence of (a) oxygen (δ18
O) and (b) carbon (δ13

C) isotopes in R. 

fulvum spicules. c) cross-plot of carbon and oxygen isotopes shows a negative correlation. 

Filled and empty symbols are data from temperature and pH experiments, respectively. Grey 

symbols are outliers. Dashed lines represent isotope equilibria of high-Mg calcites with 

13mole-% MgCO3 for (a) oxygen isotopes (Kim and O’Neil, 1997; Jiménez-López et al., 

2004) and (b) carbon isotopes (Jiménez-López et al., 2006). 

 

Fig. 10: Schematic model of spicule location in Octocorallia. OE outer epithelium; M 

mesoglea; Sc scleroblasts; SV spicule vacuole; S spicule 

 

Fig. 11: Temperature dependencies of Mg/Ca ratios in different high-Mg calcites. 

Experimental inorganic calcite (dashed line) from Mucci (1987); inorganic high-Mg calcite 

(dotted line) from Rimstidt et al. (1998); cultured, juvenile echinoids, Paracentrotus lividus 

from Hermans et al. (2010); benthic foraminifera, Planoglabratella opercularis from 

Toyofuku et al. (2000); natural Mg calcite cements (dash-dot line) from Videtich (1985) 

compared to Alcyonarian coral spicules of R. fulvum. 

 

Fig. 12: Temperature dependence of strontium distribution coefficient (DSr) of R. fulvum, 

calculated with Sr/Ca = 8.8 mmol/mol for Red Sea seawater (Kısakürek et al., 2008) and 

corrected for the effect of Mg on Sr incorporation (Mucci and Morse, 1983). Bold black and 

grey lines show temperature dependence of experimental inorganic calcite for two different 
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crystal growth rates (R, 10
2.6

 and 10
4
 µmol/m²/h) from Tang et al. (2008a). Errors on DSr and 

temperature are smaller than symbols. 

 

Fig. 13: Calcium isotope fractionation (Δ44/40
Ca) in high-Mg calcite spicules of R. fulvum. a) 

temperature experiments compared to published inorganic and biogenic carbonates. R. fulvum 

plots in the range of aragonitic scleractinian coral (Acropora sp.; Böhm et al., 2006) and 

planktic foraminifera (Griffith et al., 2008, core top samples). Inorganic calcites from Tang et 

al. (2008b, regression through data from experiments with precipitation rates log(R) = 2.8 to 

3.6, in µmol/m²/h). Inorganic aragonites from Gussone et al. (2003, 2005). b) pH experiments: 

R. fulvum data plotted against [CO3
2-

] calculated from pH and TA lie in the same range as E. 

huxleyi (Gussone et al., 2006) and G. ruber (Kısakürek et al., 2011). Inorganic calcites of 

Lemarchand et al. (2004) show a steep positive slope, in contrast to inorganic calcites from 

Tang et al. (2008b), which showed a steep negative slope (see also Eisenhauer et al., 2009). 

The latter plot outside of the displayed [CO3
2-

] range and are not shown in the figure. Data are 

not shown. Δ44/40
Ca of R. fulvum was calculated with a δ44/40

Caseawater of 1.82‰. Error bars on 

[CO3
2-

] show the maximum range calculated from pH day/night fluctuations and precision of 

TA measurements. 

  

Fig. 14: Calcium isotope fractionation of R. fulvum plotted against DSr and compared to 

coccolith data from Müller et al. (2011). Numbers next to symbol indicate pH (upper) and 

corresponding [CO3
2-

] in seawater (lower, µmol/kg). 
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Tables 

 

Table 1 

Carbonate speciation in seawater solutions. 

Reservoir 

  pH DIC HCO3
-
 CO3

2-
 CO2* pCO2 TA SEM  Ωarg 

   (NBS) (µmol kg
-1

) (ppmv) (µeq kg
-1

)    

T1 (1-4) 8.201 1923 1661 252 9.9 364.6 2280 1.0 3.93 

T2 (5-7) 8.200 1902 1643 249 9.8 360.6 2257 2.3 3.89 

pH a 8.528 1739 1312 424 3.7 135.3 2357 0.5 6.61 

 b 8.206 1793 1546 238 9.1 334.7 2138 1.0 3.71 

 c 7.918 1809 1658 132 18.9 696.8 1989 1.7 2.05 

 d 7.666 1820 1709 76 34.9 1283 1901 2.9 1.18 
                    ± 0.002 (SEM) 

 

Chamber 

  T  pH 1SD DIC HCO3
-

CO3
2-

 CO2* pCO2 TA SEM  Ωarg 

   (°C)  (NBS)   (µmol kg
-1

) (ppmv) (µeq kg
-1

)    

T1 1 19        2171 0.9  

 2 22        2173 1.9  

 3 25        2103 1.5  

 4 28        2024 2.8  

T2 5 23 8.256 0.039 1865 1605 251 8.8 300.8 2226 0.5 3.86 

 6 29 8.314 0.023 1751 1433 312 6.3 248.5 2205 3.4 4.93 

 7 32 8.246 0.018 1809 1496 306 7.4 311.0 2250 2.4 4.91 

pH a 26 8.442 0.038 1792 1414 373 4.8 178.4 2333 1.1 5.81 

 b 26 8.345 0.058 1675 1374 295 5.8 213.3 2113 0.6 4.59 

 c 26 8.335 0.065 1564 1293 265 5.8 210.3 1968 0.4 4.12 

 d 26 8.153 0.018 1587 1390 188 9.2 342.1 1872 1.0 2.93 

 

Carbonate speciation was calculated from measured TA and pH using the freely available 

CO2SYS program by Lewis and Wallace (1998). Reservoir: Seawater carbonate chemistry 

before entering the experimental chamber (see Fig. 2). Standard error of the mean (SEM) for 

TA and pH was calculated from three repeat measurements on the same sample. Chamber: 

seawater was collected from the outflow of the experimental chamber and TA was 

determined. pH represents the calculated average of 4 day and night pH pairs randomly 

chosen over the course of the experiment. 1SD denotes day/night fluctuations of pH in the 

chamber. Experiments were carried out in three runs: T1 represents first temperature set at 

T=19, 22, 25 and 28°C (1-4), T2 was performed at 23, 29 and 32°C (5-7), while pH 

experiments were all carried out at a constant temperature of 26°C. The pH of the temperature 

experiments was only monitored for T2. 
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Table 2 

Elemental and Ca isotope ratios of R. fulvum.  

 

  T  pH [CO3
2-

] Mg/Ca Sr/Ca δ44/40Ca calcification rate 

    (°C) (NBS) (µmol kg
-1

) (mmol/mol) (‰) (µmol CaCO3 cminitial coral piece
-2

 d
-1

) 

T1 1 19   149.8 2.93  2.26 ± 0.028 

 2 22   152.3 2.66 0.81± 0.20 2.42 ± 0.049 

 3 25   156.3 2.84 0.75 ± 0.07 5.16 ± 0.053 

 4 28   156.9 2.82 0.74 ± 0.22 3.78 ± 0.044 

T2 5 23 8.256 250.8 152.4 2.83 0.81 ± 0.10 3.54 ± 0.272 

 6 29 8.314 311.5   0.76 ± 0.13 5.58 ± 0.448 

 7 32 8.246 305.8 163.5 2.76 0.75 ± 0.05 0.75 ± 0.342 

pH a 26 8.442 373.1 155.2 2.66 0.69 ± 0.07 2.69 ± 0.115 

 b 26 8.345 294.8 153.4 2.64 0.77 ± 0.06 2.83 ± 0.158 

 c 26 8.335 264.9 151.4 2.56 0.72 ± 0.11 2.44 ± 0.173 

 d 26 8.153 188.2 149.7 2.46 0.88 ± 0.11 3.03 ± 0.383 

 

pH and [CO3
2-

] were taken from Table 1. Results for Mg/Ca, Sr/Ca and δ44/40
Ca represent 

mean ± 2SEM. The errors on Sr/Ca and Mg/Ca with ±0.5% and ±0.7% (n=4, rel. standard 

deviation, RSD), respectively, were calculated from repeats of an internal project standard 

(see section 2.2.2). Errors on calcification rates (±SEM) were calculated from triplicate ΔTA 

and surface area measurements.  
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Table 3 

Stable oxygen and carbon isotopes of R. fulvum.  

   T pH δ18
OCaCO3 δ18

OCaCO3 10
3
 ln(

18α) δ13
CCaCO3 10

3
 ln(

13α) 

    (°C) (NBS) (‰ VPDB) (‰ VSMOW)   (‰ VPDB)   

T1 2a 22   3.07 34.02 31.85 -4.18 -2.74 

 2b 22   3.10 34.06 31.88 -4.17 -2.73 

 3 25   2.48 33.41 31.26 -3.35 -1.91 

 4a 28   2.04 32.96 30.82 -2.81 -1.36 

 4b 28   2.12 33.05 30.91 -2.78 -1.33 

T2 5 23   1.82 32.74 30.60 -1.53 -0.08 

 6 29   0.75 31.64 29.54 -0.32 1.13 

 7 32   1.69 32.60 30.47 -2.24 -0.80 

pH a1  8.442 2.30 33.23 31.08 -2.94 -1.50 

 a2  8.442 2.28 33.21 31.06 -2.30 -0.86 

 b  8.345 2.93 33.88 31.71 -3.79 -2.35 

 c  8.335 2.74 33.68 31.52 -2.50 -1.06 

 d  8.153 2.72 33.67 31.50 -2.90 -1.45 

 

δ18
O and δ13

C of culturing seawater was 1.61‰ and -1.45‰, respectively. VPDB to VSMOW 

conversion was calculated according to Friedman and O’Neil (1977). 
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