468 research outputs found
Herbal extracts modulate the amplitude and frequency of slow waves in circular smooth muscle of mouse small intestine
Background: Herbal preparations like STW 5 (Iberogast(R)) are widely used drugs in the treatment of dyspepsia and motility-related disorders of the gastrointestinal tract. STW 5 is a phytotherapeutic agent consisting of a fixed mixture of 9 individual plant extracts. The electrophysiological mechanisms of action of STW 5 remain obscure. Aim: The aim of the present study was to investigate whether herbal extracts influence electrophysiological parameters of the small intestine. For this purpose, the resting membrane potential (RMP) and the slow wave rhythmicity of smooth muscle cells of mouse small intestine were observed. Methods: Intracellular recordings of smooth muscle cells of the circular muscle layer of mouse small intestine were performed using standard microelectrode techniques. After dissection of the mucosa, the small intestine was placed in an organ bath and a microelectrode was applied on a circular smooth muscle cell. The RMP and the amplitude of slow waves were measured in millivolts. Results: The RMP of smooth muscle cells was - 59 +/- 1.3 mV. This RMP was significantly depolarized by STW 5 ( 9.6 +/- 1.6 mV); the depolarizing effects can be mainly attributed to the constituents of matricariae flos, angelicae radix and chelidonii herba. The basal frequency of small intestinal slow waves was 39.5 +/- 1.4 min(-1) and the amplitude was 23.1 +/- 0.9 mV. STW 5 significantly reduced the amplitude and frequency of the slow waves ( 11.7 +/- 0.8 mV; 33.5 +/- 3.4 min(-1)). This effect on slow waves represents the sum of the effects of the 9 phytoextracts. Whereas angelicae radix and matricariae flos completely blocked slow wave activity, Iberis amara increased the frequency and amplitude, chelidonii herba reduced the frequency and amplitude of the slow waves, mentae piperitae folium reduced the frequency and left amplitude unchanged and liquiritae radix, carvi fructus and melissae folium had no effects. Conclusion: Herbal extracts cause changes in smooth muscle RMP and slow wave rhythmicity, up to reversible abolition, by blockade of large conductance Ca2+ channels and other not yet identified mechanisms. In herbal preparations like STW 5 these effects add up to a total effect and this study indicates that herbal preparations which are widely used in dyspepsia and motility-related disorders have characteristic, reproducible, reversible effects on small intestinal electrophysiology. Copyright (C) 2005 S. Karger AG, Basel
Chromatic Signals Control Proboscis Movements during Hovering Flight in the Hummingbird Hawkmoth Macroglossum stellatarum
Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general
Antidiabetic Effects of Chamomile Flowers Extract in Obese Mice through Transcriptional Stimulation of Nutrient Sensors of the Peroxisome Proliferator-Activated Receptor (PPAR) Family
Given the significant increases in the incidence of metabolic diseases,
efficient strategies for preventing and treating of these common disorders are
urgently needed. This includes the development of phytopharmaceutical products
or functional foods to prevent or cure metabolic diseases. Plant extracts from
edible biomaterial provide a potential resource of structurally diverse
molecules that can synergistically interfere with complex disorders. In this
study we describe the safe application of ethanolic chamomile (Matricaria
recutita) flowers extract (CFE) for the treatment and prevention of type 2
diabetes and associated disorders. We show in vitro that this extract
activates in particular nuclear receptor peroxisome proliferator-activated
receptor gamma (PPARγ) and its isotypes. In a cellular context, in human
primary adipocytes CFE administration (300 µg/ml) led to specific expression
of target genes of PPARγ, whereas in human hepatocytes CFE-induced we detected
expression changes of genes that were regulated by PPARα. In vivo treatment of
insulin-resistant high-fat diet (HFD)-fed C57BL/6 mice with CFE (200 mg/kg/d)
for 6 weeks considerably reduced insulin resistance, glucose intolerance,
plasma triacylglycerol, non-esterified fatty acids (NEFA) and LDL/VLDL
cholesterol. Co-feeding of lean C57BL/6 mice a HFD with 200 mg/kg/d CFE for 20
weeks showed effective prevention of fatty liver formation and hepatic
inflammation, indicating additionally hepatoprotective effects of the extract.
Moreover, CFE treatment did not reveal side effects, which have otherwise been
associated with strong synthetic PPAR-targeting molecules, such as weight
gain, liver disorders, hemodilution or bone cell turnover. Taken together,
modulation of PPARs and other factors by chamomile flowers extract has the
potential to prevent or treat type 2 diabetes and related disorders
Designer TGFβ Superfamily Ligands with Diversified Functionality
Transforming Growth Factor – beta (TGFβ) superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs), and Bone Morphogenetic Proteins (BMPs), are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer), to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values
Cavity QED with chip-based toroidal microresonators
We report the demonstration of strong coupling between single Cesium atoms and a high-Q chip-based microresonator. Our toroidal microresonators are compact, Si chip-based whispering gallery mode resonators that confine light to small volumes with extremely low losses, and are manufactured in large numbers by standard lithographic techniques. Combined with the capability to couple efficiently light to and from these microresonators by a tapered optical fiber, toroidal microresonators offer a promising avenue towards scalable quantum networks. Experimentally, laser cooled Cs atoms are dropped onto a toroidal microresonator while a probe beam is critically coupled to the cavity mode. When an atom interacts with the cavity, it modifies the resonance spectrum of the cavity, leading to rejection of some of the probe light from the cavity, and thus to an increase in the output power. By observing such transit events while systematically detuning the cavity from the atomic resonance, we determine the maximal accessible single-photon Rabi frequency of Ω0/2π ≈ (100 ± 24) MHz. This value puts our system in the regime of strong coupling, being significantly larger than the dissipation rates in our system
Binocular field configuration in owls:the role of foraging ecology
The binocular field of vision differs widely in birds depending on ecological traits such as foraging. Owls (Strigiformes) have been considered to have a unique binocular field, but whether it is related to foraging has remained unknown. While taking into account allometry and phylogeny, we hypothesized that both daily activity cycle and diet determine the size and shape of the binocular field in owls. Here, we compared the binocular field configuration of 23 species of owls. While we found no effect of allometry and phylogeny, ecological traits strongly influence the binocular field shape and size. Binocular field shape of owls significantly differed from that of diurnal raptors. Among owls, binocular field shape was relatively conserved, but binocular field size differed among species depending on ecological traits, with larger binocular fields in species living in dense habitat and foraging on invertebrates. Our results suggest that (i) binocular field shape is associated with the time of foraging in the daily cycle (owls versus diurnal raptors) and (ii) that binocular field size differs between closely related owl species even though the general shape is conserved, possibly because the field of view is partially restricted by feathers, in a trade-off with auditory localization
Imaging Flaws under Insulation Using a Squid Magnetometer
Superconducting QUantum Interference Devices (SQUID) are the most sensitive instruments known for the measurement of magnetic fields. An all niobium two-hole homemade SQUID can easily achieve sensitivities of 10-4 Ф0/√Hz (Ф0 = 2.07 × 10-15 Wb). Our complete system has a sensitivity of 50 × 10-15 Tesla √Hz, and more sophisticated systems can reach sensitivities one order of magnitude higher. Due to its high sensitivity, and to the advent of high temperature superconductivity, SQUID systems presents new opportunities for its use in nondestructive evaluation of electrically conducting and ferromagnetic structures, mainly when the area to be inspected is difficult to be reached
Relative Role of Flower Color and Scent on Pollinator Attraction: Experimental Tests using F1 and F2 Hybrids of Daylily and Nightlily
The daylily (Hemerocallis fulva) and nightlily (H. citrina) are typical examples of a butterfly-pollination system and a hawkmoth-pollination system, respectively. H. fulva has diurnal, reddish or orange-colored flowers and is mainly pollinated by diurnal swallowtail butterflies. H. citrina has nocturnal, yellowish flowers with a sweet fragrance and is pollinated by nocturnal hawkmoths. We evaluated the relative roles of flower color and scent on the evolutionary shift from a diurnally flowering ancestor to H. citrina. We conducted a series of experiments that mimic situations in which mutants differing in either flower color, floral scent or both appeared in a diurnally flowering population. An experimental array of 6×6 potted plants, mixed with 24 plants of H. fulva and 12 plants of either F1 or F2 hybrids, were placed in the field, and visitations of swallowtail butterflies and nocturnal hawkmoths were recorded with camcorders. Swallowtail butterflies preferentially visited reddish or orange-colored flowers and hawkmoths preferentially visited yellowish flowers. Neither swallowtail butterflies nor nocturnal hawkmoths showed significant preferences for overall scent emission. Our results suggest that mutations in flower color would be more relevant to the adaptive shift from a diurnally flowering ancestor to H. citrina than that in floral scent
Colouration in amphibians as a reflection of nutritional status : the case of tree frogs in Costa Rica
Colouration has been considered a cue for mating success in many species; ornaments in males often are related to carotenoid mobilization towards feathers and/or skin and can signal general health and nutrition status. However, there are several factors that can also link with status, such as physiological blood parameters and body condition, but there is not substantial evidence which supports the existence of these relationships and interactions in anurans. This study evaluated how body score and blood values interact with colouration in free-range Agalychnis callidryas and Agalychnis annae males. We found significant associations between body condition and plasmatic proteins and haematocrit, as well as between body condition and colour values from the chromaticity diagram. We also demonstrated that there is a significant relation between the glucose and plasmatic protein values that were reflected in the ventral colours of the animals, and haematocrit inversely affected most of those colour values. Significant differences were found between species as well as between populations of A. callidryas, suggesting that despite colour variation, there are also biochemical differences within animals from the same species located in different regions. These data provide information on underlying factors for colouration of male tree frogs in nature, provide insights about the dynamics of several nutrients in the amphibian model and how this could affect the reproductive output of the animals
- …