2,044 research outputs found
Influence of an aperture on the performance of a two-degree-of-freedom iron-cored spherical permanent-magnet actuator
Abstract—This paper describes a computational and experimental study of a two-degree-of-freedom spherical permanent-magnet actuator equipped with an iron stator. In particular, it considers the effect of introducing an aperture in the stator core to facilitate access to the armature. The resultant magnetic field distribution in the region occupied by the stator windings, the net unbalanced radial force, and the resulting reluctance torque are determined by three-dimensional magnetostatic finite-element
analysis. The predicted reluctance torque is validated experimentally, and its implications on actuator performance are described
Situs inversus with renal neoplasm: a case report
This is a case report of a 43-year male patient who presented at the University Teaching Hospital (UTH), Lusaka, Zambia with a histologically proven renal cell carcinoma and during the course of the investigations, the patient was also found to have situs inversus totalis
A Markov Chain Monte Carlo Algorithm for analysis of low signal-to-noise CMB data
We present a new Monte Carlo Markov Chain algorithm for CMB analysis in the
low signal-to-noise regime. This method builds on and complements the
previously described CMB Gibbs sampler, and effectively solves the low
signal-to-noise inefficiency problem of the direct Gibbs sampler. The new
algorithm is a simple Metropolis-Hastings sampler with a general proposal rule
for the power spectrum, C_l, followed by a particular deterministic rescaling
operation of the sky signal. The acceptance probability for this joint move
depends on the sky map only through the difference of chi-squared between the
original and proposed sky sample, which is close to unity in the low
signal-to-noise regime. The algorithm is completed by alternating this move
with a standard Gibbs move. Together, these two proposals constitute a
computationally efficient algorithm for mapping out the full joint CMB
posterior, both in the high and low signal-to-noise regimes.Comment: Submitted to Ap
Co-Benefits and Trade Offs of INDCs (chapter 3)
Climate mitigation can trigger synergies and trade-offs with other policy objectives at the national level, such as poverty reduction, clean air, public health, or energy independence. Synergies (often referred to as co-benefits) are thus important because they influence the national support for climate mitigation policies and more directly impact the life of local populations
Non-Thermal Continuum toward SGRB2(N-LMH)
An analysis of continuum antenna temperatures observed in the Green Bank
Telescope (GBT) spectrometer bandpasses is presented for observations toward
SgrB2(N-LMH). Since 2004, we have identified four new prebiotic molecules
toward this source by means of rotational transitions between low energy
levels; concurrently, we have observed significant continuum in the GBT
spectrometer bandpasses centered at 85 different frequencies in the range of 1
to 48 GHz. The continuum heavily influences the molecular spectral features
since we have observed far more absorption lines than emission lines for each
of these new molecular species. Hence, it is important to understand the
nature, distribution, and intensity of the underlying continuum in the GBT
bandpasses for the purposes of radiative transfer, i.e. the means by which
reliable molecular abundances are estimated. We find that the GBT spectrometer
bandpass continuum is consistent with optically-thin, non thermal (synchrotron)
emission with a flux density spectral index of -0.7 and a Gaussian source size
of ~143" at 1 GHz that decreases with increasing frequency as nu^(-0.52). Some
support for this model is provided by high frequency Very Large Array (VLA)
observations of SgrB2.Comment: Accepted for Publication in the Astrophysical Journal Letter
The joint large-scale foreground-CMB posteriors of the 3-year WMAP data
Using a Gibbs sampling algorithm for joint CMB estimation and component
separation, we compute the large-scale CMB and foreground posteriors of the
3-yr WMAP temperature data. Our parametric data model includes the cosmological
CMB signal and instrumental noise, a single power law foreground component with
free amplitude and spectral index for each pixel, a thermal dust template with
a single free overall amplitude, and free monopoles and dipoles at each
frequency. This simple model yields a surprisingly good fit to the data over
the full frequency range from 23 to 94 GHz. We obtain a new estimate of the CMB
sky signal and power spectrum, and a new foreground model, including a
measurement of the effective spectral index over the high-latitude sky. A
particularly significant result is the detection of a common spurious offset in
all frequency bands of ~ -13muK, as well as a dipole in the V-band data.
Correcting for these is essential when determining the effective spectral index
of the foregrounds. We find that our new foreground model is in good agreement
with template-based model presented by the WMAP team, but not with their MEM
reconstruction. We believe the latter may be at least partially compromised by
the residual offsets and dipoles in the data. Fortunately, the CMB power
spectrum is not significantly affected by these issues, as our new spectrum is
in excellent agreement with that published by the WMAP team. The corresponding
cosmological parameters are also virtually unchanged.Comment: 5 pages, 4 figures, submitted to ApJL. Background data are available
at http://www.astro.uio.no/~hke under the Research ta
Bayesian analysis of the low-resolution polarized 3-year WMAP sky maps
We apply a previously developed Gibbs sampling framework to the foreground
corrected 3-yr WMAP polarization data and compute the power spectrum and
residual foreground template amplitude posterior distributions. We first
analyze the co-added Q- and V-band data, and compare our results to the
likelihood code published by the WMAP team. We find good agreement, and thus
verify the numerics and data processing steps of both approaches. However, we
also analyze the Q- and V-bands separately, allowing for non-zero EB
cross-correlations and including two individual foreground template amplitudes
tracing synchrotron and dust emission. In these analyses, we find tentative
evidence of systematics: The foreground tracers correlate with each of the Q-
and V-band sky maps individually, although not with the co-added QV map; there
is a noticeable negative EB cross-correlation at l <~ 16 in the V-band map; and
finally, when relaxing the constraints on EB and BB, noticeable differences are
observed between the marginalized band powers in the Q- and V-bands. Further
studies of these features are imperative, given the importance of the low-l EE
spectrum on the optical depth of reionization tau and the spectral index of
scalar perturbations n_s.Comment: 5 pages, 4 figures, submitted to ApJ
CMB likelihood approximation by a Gaussianized Blackwell-Rao estimator
We introduce a new CMB temperature likelihood approximation called the
Gaussianized Blackwell-Rao (GBR) estimator. This estimator is derived by
transforming the observed marginal power spectrum distributions obtained by the
CMB Gibbs sampler into standard univariate Gaussians, and then approximate
their joint transformed distribution by a multivariate Gaussian. The method is
exact for full-sky coverage and uniform noise, and an excellent approximation
for sky cuts and scanning patterns relevant for modern satellite experiments
such as WMAP and Planck. A single evaluation of this estimator between l=2 and
200 takes ~0.2 CPU milliseconds, while for comparison, a single pixel space
likelihood evaluation between l=2 and 30 for a map with ~2500 pixels requires
~20 seconds. We apply this tool to the 5-year WMAP temperature data, and
re-estimate the angular temperature power spectrum, , and likelihood,
L(C_l), for l<=200, and derive new cosmological parameters for the standard
six-parameter LambdaCDM model. Our spectrum is in excellent agreement with the
official WMAP spectrum, but we find slight differences in the derived
cosmological parameters. Most importantly, the spectral index of scalar
perturbations is n_s=0.973 +/- 0.014, 1.9 sigma away from unity and 0.6 sigma
higher than the official WMAP result, n_s = 0.965 +/- 0.014. This suggests that
an exact likelihood treatment is required to higher l's than previously
believed, reinforcing and extending our conclusions from the 3-year WMAP
analysis. In that case, we found that the sub-optimal likelihood approximation
adopted between l=12 and 30 by the WMAP team biased n_s low by 0.4 sigma, while
here we find that the same approximation between l=30 and 200 introduces a bias
of 0.6 sigma in n_s.Comment: 10 pages, 7 figures, submitted to Ap
Optimized Large-Scale CMB Likelihood And Quadratic Maximum Likelihood Power Spectrum Estimation
We revisit the problem of exact CMB likelihood and power spectrum estimation
with the goal of minimizing computational cost through linear compression. This
idea was originally proposed for CMB purposes by Tegmark et al.\ (1997), and
here we develop it into a fully working computational framework for large-scale
polarization analysis, adopting \WMAP\ as a worked example. We compare five
different linear bases (pixel space, harmonic space, noise covariance
eigenvectors, signal-to-noise covariance eigenvectors and signal-plus-noise
covariance eigenvectors) in terms of compression efficiency, and find that the
computationally most efficient basis is the signal-to-noise eigenvector basis,
which is closely related to the Karhunen-Loeve and Principal Component
transforms, in agreement with previous suggestions. For this basis, the
information in 6836 unmasked \WMAP\ sky map pixels can be compressed into a
smaller set of 3102 modes, with a maximum error increase of any single
multipole of 3.8\% at , and a maximum shift in the mean values of a
joint distribution of an amplitude--tilt model of 0.006. This
compression reduces the computational cost of a single likelihood evaluation by
a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust
likelihood by implicitly regularizing nearly degenerate modes. Finally, we use
the same compression framework to formulate a numerically stable and
computationally efficient variation of the Quadratic Maximum Likelihood
implementation that requires less than 3 GB of memory and 2 CPU minutes per
iteration for , rendering low- QML CMB power spectrum
analysis fully tractable on a standard laptop.Comment: 13 pages, 13 figures, accepted by ApJ
- …