We introduce a new CMB temperature likelihood approximation called the
Gaussianized Blackwell-Rao (GBR) estimator. This estimator is derived by
transforming the observed marginal power spectrum distributions obtained by the
CMB Gibbs sampler into standard univariate Gaussians, and then approximate
their joint transformed distribution by a multivariate Gaussian. The method is
exact for full-sky coverage and uniform noise, and an excellent approximation
for sky cuts and scanning patterns relevant for modern satellite experiments
such as WMAP and Planck. A single evaluation of this estimator between l=2 and
200 takes ~0.2 CPU milliseconds, while for comparison, a single pixel space
likelihood evaluation between l=2 and 30 for a map with ~2500 pixels requires
~20 seconds. We apply this tool to the 5-year WMAP temperature data, and
re-estimate the angular temperature power spectrum, Cℓ, and likelihood,
L(C_l), for l<=200, and derive new cosmological parameters for the standard
six-parameter LambdaCDM model. Our spectrum is in excellent agreement with the
official WMAP spectrum, but we find slight differences in the derived
cosmological parameters. Most importantly, the spectral index of scalar
perturbations is n_s=0.973 +/- 0.014, 1.9 sigma away from unity and 0.6 sigma
higher than the official WMAP result, n_s = 0.965 +/- 0.014. This suggests that
an exact likelihood treatment is required to higher l's than previously
believed, reinforcing and extending our conclusions from the 3-year WMAP
analysis. In that case, we found that the sub-optimal likelihood approximation
adopted between l=12 and 30 by the WMAP team biased n_s low by 0.4 sigma, while
here we find that the same approximation between l=30 and 200 introduces a bias
of 0.6 sigma in n_s.Comment: 10 pages, 7 figures, submitted to Ap