50 research outputs found
Early pregnancy serum IGFBP-1 relates to lipid profile in overweight and obese women
Lower level of insulin-like growth factor-binding protein (IGFBP-1) has been observed in insulin resistance, while higher level of matrix metalloproteinase-8 (MMP-8) has been linked to obesity. The aim here was to study in overweight and obese women, typically manifesting with insulin resistance, whether IGFBP-1 and MMP-8 are related to and reflect systemic low-grade inflammation, metabolism and diet. Fasting serum from overweight and obese pregnant women (n = 100) in early pregnancy were analysed for IGFBP-1, phosphorylated IGFBP-1 (phIGFBP-1) and MMP-8. High-sensitivity CRP and GlycA were used as markers for low grade inflammation. GlycA and lipids were quantified using NMR. IGFBP-1 associated negatively with GlycA, evidenced by higher concentrations in the lowest quartile (median 1.53 (IQR 1.45-1.72)) compared to the highest (1.46 (1.39-1.55)) (P = 0.03). Several lipid metabolites, particularly HDL-cholesterol, correlated inversely with phIGFBP-1 (FDR<0.1). Nutritional status and diet contributed to the levels of IGFBP-1, demonstrated as an inverse correlation with maternal weight (Spearman r = -0.205, P = 0.04) and dietary intake of vitamin A (r = -0.253, P = 0.014) and a direct correlation with dietary intake of polyunsaturated fatty acids (Spearman r = 0.222, P = 0.03). MMP-8 correlated inversely with pyridoxine (r = -0.321, P = 0.002) and potassium (r = -0.220, P = 0.033). Maternal serum IGFBP-1 may contribute to maternal lipid metabolism in overweight and obese women during early pregnancy. These findings may be of importance in identification of metabolic disturbances preceding the adverse metabolic outcomes in pregnancy
Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man
The current test systems employed by pharmaceutical industry are poorly predictive for drug-induced liver injury (DILI). The ‘MIP-DILI’ project addresses this situation by the development of innovative preclinical test systems which are both mechanism-based and of physiological, pharmacological and pathological relevance to DILI in humans. An iterative, tiered approach with respect to test compounds, test systems, bioanalysis and systems analysis is adopted to evaluate existing models and develop new models that can provide validated test systems with respect to the prediction of specific forms of DILI and further elucidation of mechanisms. An essential component of this effort is the choice of compound training set that will be used to inform refinement and/or development of new model systems that allow prediction based on knowledge of mechanisms, in a tiered fashion. In this review, we focus on the selection of MIP-DILI training compounds for mechanism-based evaluation of non-clinical prediction of DILI. The selected compounds address both hepatocellular and cholestatic DILI patterns in man, covering a broad range of pharmacologies and chemistries, and taking into account available data on potential DILI mechanisms (e.g. mitochondrial injury, reactive metabolites, biliary transport inhibition, and immune responses). Known mechanisms by which these compounds are believed to cause liver injury have been described, where many if not all drugs in this review appear to exhibit multiple toxicological mechanisms. Thus, the training compounds selection offered a valuable tool to profile DILI mechanisms and to interrogate existing and novel in vitro systems for the prediction of human DILI
Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models
Drug-induced liver injury (DILI) is a patient-specific, temporal, multifactorial pathophysiological process that cannot yet be recapitulated in a single in vitro model. Current preclinical testing regimes for the detection of human DILI thus remain inadequate. A systematic and concerted research effort is required to address the deficiencies in current models and to present a defined approach towards the development of new or adapted model systems for DILI prediction. This Perspective defines the current status of available models and the mechanistic understanding of DILI, and proposes our vision of a roadmap for the development of predictive preclinical models of human DILI
Podocyte-Specific Overexpression of Wild Type or Mutant Trpc6 in Mice Is Sufficient to Cause Glomerular Disease
Mutations in the TRPC6 calcium channel (Transient receptor potential channel 6) gene have been associated with familiar forms of Focal and Segmental Glomerulosclerosis (FSGS) affecting children and adults. In addition, acquired glomerular diseases are associated with increased expression levels of TRPC6. However, the exact role of TRPC6 in the pathogenesis of FSGS remains to be elucidated. In this work we describe the generation and phenotypic characterization of three different transgenic mouse lines with podocyte-specific overexpression of the wild type or any of two mutant forms of Trpc6 (P111Q and E896K) previously related to FSGS. Consistent with the human phenotype a non-nephrotic range of albuminuria was detectable in almost all transgenic lines. The histological analysis demonstrated that the transgenic mice developed a kidney disease similar to human FSGS. Differences of 2–3 folds in the presence of glomerular lesions were found between the non transgenic and transgenic mice expressing Trpc6 in its wild type or mutant forms specifically in podocytes. Electron microscopy of glomerulus from transgenic mice showed extensive podocyte foot process effacement. We conclude that overexpression of Trpc6 (wild type or mutated) in podocytes is sufficient to cause a kidney disease consistent with FSGS. Our results contribute to reinforce the central role of podocytes in the etiology of FSGS. These mice constitute an important new model in which to study future therapies and outcomes of this complex disease
New perspectives on the renal slit diaphragm protein podocin
Podocin is a critical component of the glomerular filtration barrier, its mutations causing recessive steroid-resistant nephrotic syndrome. A GenBank analysis of the human podocin (NPHS2) gene resulted in the possible existence of a new splice variant of podocin in the kidney, missing the in-frame of exon 5, encoding the prohibitin homology domain. Using RT–polymerase chain reaction and immunoblotting followed by sequence analysis, we are for the first time able to prove the expression of a novel podocin isoform (isoform 2), exclusively and constitutively expressed in human podocytes. Furthermore, we reveal singular extrarenal podocin expression in human and murine testis. Our data show the Sertoli cells of the seminiferous tubules to be the origin of testicular podocin. Confocal laser microscopy illustrates the co-localization of podocin with filamentous actin within Sertoli cells, suggesting a role of podocin in the blood/testis barrier. These results led to the rationale to examine podocin expression in testes of men with Sertoli cell-only syndrome, a disorder characterized by azoospermia. Interestingly, we observed a complete down-regulation of podocin mRNA in Sertoli cell-only syndrome, indicating a possible role of podocin in the pathogenesis of this germinal aplasia. Men with Sertoli cell-only syndrome show normal renal podocin expression, suggesting an alternate regulation of the testicular promoter. Our findings may change the perception of podocin and give new insights into the ultrastructure of glomerular slit diaphragm and the blood/testis barrier
Identification and characterization of microRNAs expressed in the African malaria vector Anopheles funestus life stages using high throughput sequencing
Background: Over the past several years, thousands of microRNAs (miRNAs) have been identified in the genomes of various insects through cloning and sequencing or even by computational prediction. However, the number of miRNAs identified in anopheline species is low and little is known about their role. The mosquito Anopheles funestus is one of the dominant malaria vectors in Africa, which infects and kills millions of people every year. Therefore, small RNA molecules isolated from the four life stages (eggs, larvae, pupae and unfed adult females) of An. funestus were sequenced using next generation sequencing technology. Results: High throughput sequencing of four replicates in combination with computational analysis identified 107 mature miRNA sequences expressed in the An. funestus mosquito. These include 20 novel miRNAs without sequence identity in any organism and eight miRNAs not previously reported in the Anopheles genus but are known in non-anopheles mosquitoes. Finally, the changes in the expression of miRNAs during the mosquito development were determined and the analysis showed that many miRNAs have stage-specific expression, and are co-transcribed and co-regulated during development. Conclusions: This study presents the first direct experimental evidence of miRNAs in An. funestus and the first profiling study of miRNA associated with the maturation in this mosquito. Overall, the results indicate that miRNAs play important roles during the growth and development. Silencing such molecules in a specific life stage could decrease the vector population and therefore interrupt malaria transmission.IS
Transcriptional and Post-Transcriptional Regulation of SPAST, the Gene Most Frequently Mutated in Hereditary Spastic Paraplegia
Hereditary spastic paraplegias (HSPs) comprise a group of neurodegenerative disorders that are characterized by progressive spasticity of the lower extremities, due to axonal degeneration in the corticospinal motor tracts. HSPs are genetically heterogeneous and show autosomal dominant inheritance in ∼70–80% of cases, with additional cases being recessive or X-linked. The most common type of HSP is SPG4 with mutations in the SPAST gene, encoding spastin, which occurs in 40% of dominantly inherited cases and in ∼10% of sporadic cases. Both loss-of-function and dominant-negative mutation mechanisms have been described for SPG4, suggesting that precise or stoichiometric levels of spastin are necessary for biological function. Therefore, we hypothesized that regulatory mechanisms controlling expression of SPAST are important determinants of spastin biology, and if altered, could contribute to the development and progression of the disease. To examine the transcriptional and post-transcriptional regulation of SPAST, we used molecular phylogenetic methods to identify conserved sequences for putative transcription factor binding sites and miRNA targeting motifs in the SPAST promoter and 3′-UTR, respectively. By a variety of molecular methods, we demonstrate that SPAST transcription is positively regulated by NRF1 and SOX11. Furthermore, we show that miR-96 and miR-182 negatively regulate SPAST by effects on mRNA stability and protein level. These transcriptional and miRNA regulatory mechanisms provide new functional targets for mutation screening and therapeutic targeting in HSP
Stem cell-derived models to improve mechanistic understanding and prediction of human drug induced liver injury
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135984/1/hep28886.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135984/2/hep28886_am.pd