24 research outputs found

    Probing core polarization around 78Ni: intermediate energy Coulomb excitation of 74Ni

    Get PDF
    The study of the evolution of nuclear shells far from stability provides fundamental information about the shape and symmetry of the nuclear mean field. Nuclei with large neutron/proton ratio allow to probe the density dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Of particular interest is the region of 78Ni where the large neutron excess coincides with a double shell closure. We have recently measured the B(E2; 0+ → 2+) of the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory of the Michigan State University. The 74Ni secondary beam has been produced by fragmentation of 86Kr at 140 AMeV on a thick Be target. Selected radioactive fragments impinged on a secondary 197Au target where the measurement of the emitted γ-rays allows to extract the Coulomb excitation cross section and related structure information. Preliminary B(E2) values do not point towards an enhancement of the transition matrix element and the comparison to what was already measured by Aoi and co-workers in [1] opens new scenarios in the interpretation of the shell evolution of the Z=28 isotopes

    High-spin structures in Xe 132 and Xe 133 and evidence for isomers along the N=79 isotones

    Get PDF
    The transitional nuclei Xe132 and Xe133 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Both nuclei are populated (i) in Xe136+Pb208 MNT reactions employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the Xe136+Pt198 MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a Te130(α,xn)Xe134-xn fusion-evaporation reaction employing the HORUS γ-ray array at the University of Cologne. The high-spin level schemes are considerably extended above the Jπ=(7-) and (10+) isomers in Xe132 and above the 11/2- isomer in Xe133. The results are compared to the high-spin systematics of the Z=54 as well as the N=78 and N=79 chains. Furthermore, evidence is found for a long-lived (T1/2â‰1μs) isomer in Xe133 which closes a gap along the N=79 isotones. Shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features

    Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.

    Get PDF
    The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic ob- servables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the ef- fective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope ( 64 Ni) towards the 78 Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently per- formed an experiment with the goal to extract the B(E2; 0 + ! 2 + ) value for the 74 Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed

    Multinucleon transfer reactions: Present status and perspectives

    No full text
    Significant advances have been achieved in the last years in the field of multinucleon transfer reactions. The advent of the last generation large solid angle magnetic spectrometers pushed the detection efficiency more than an order of magnitude above previous limits, with a significant gain in mass resolution for very heavy ions. Further, the coupling of these spectrometers to large gamma arrays allowed to perform gamma-particle coincidences. One can thus detect the transfer strength to the lowest excited levels of binary products and perform gamma spectroscopy for nuclei moderately far from stability, especially in the neutron-rich region. Via transfer of multiple pairs valuable information on nucleon-nucleon correlations can also be derived, especially from measurements performed below the Coulomb barrier. There is growing interest in the study of the properties of the heavy binary partner, since the transfer mechanism may allow the production of (moderately) neutron rich nuclei in the Pb and in the actinides regions, crucial also for astrophysics. Present studies are relevant for future studies with radioactive beams. (C) 2013 Elsevier B.V. All rights reserved

    Transfer reaction studies with spectrometers

    No full text
    The revival of transfer reaction studies benefited from the construction of the new generation large solid angle spectrometers, coupled to large \u3b3arrays. The recent results of \u3b3-particle coincident measurements in 40Ca+96Zr and 40Ar+208Pb reactions demonstrate a strong interplay between single-particle and collective degrees of freedom that is pertinent to the reaction dynamics. The development of collectivity has been followed in odd Ar isotopes populated in the 40Ar+208Pb reaction through the excitation of the 11=2 states, understood as the coupling of single particle degrees of freedom to nuclear vibration quanta. Pair transfer modes is another important degree of freedom which is presently being studied with Prisma in inverse kinematics at energies far below the Coulomb barrier. First results from the 96Zr+40Ca reaction elucidate the role played by nucleon-nucleon correlation

    Spectroscopic studies with the PRISMA-CLARA set-up

    Get PDF
    The large solid angle magnetic spectrometer for heavy ions PRISMA, installed at Laboratori Nazionali di Legnaro (LNL), was operated up to the end of March 2008 in conjunction with the highly efficient CLARA set-up. It allowed to carry out nuclear structure and reaction mechanism studies in several mass regions of the nuclide chart. Results obtained in the vicinity of the island of inversion and for the heavy iron and chromium isotopes are presented in this contribution. The status of the new focal plane detectors specifically designed for light ions and slow moving heavy ions is also reported

    New level scheme and shell model description of Rn212

    No full text
    Level structures of212Rn have been studied by in-beam\u3b3-ray spectroscopic methods using the209Bi(6Li,3n)212Rn reaction at beam energies of 28, 30, and 34 MeV. A number of new nonyrast states based on\u3c0h49/2and\u3c0h39/2f7/2configurations have been identified. A 3( 12)collective state is also proposed at 2121 keV, which ismost likely formed by mixing the octupole vibration with the 3 12member of the\u3c0h39/2i13/2multiplet. The levelscheme is compared with large-scale shell model calculations and discussed in terms of excitations of valenceprotons and without contributions from the208Pb core. An overall excellent agreement is obtained for states thatcan be described in this model space

    Quadrupole Transition Strength in the Ni74 Nucleus and Core Polarization Effects in the Neutron-Rich Ni Isotopes

    Get PDF
    The reduced transition probability B(E2;0(+) -> 2(+)) has been measured for the neutron-rich nucleus Ni-74 in an intermediate energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory at Michigan State University. The obtained B(E2;0(+) -> 2(+)) = 642(-226)(+216) e(2) fm(4) value defines a trend which is unexpectedly small if referred to Ni-70 and to a previous indirect determination of the transition strength in Ni-74. This indicates a reduced polarization of the Z = 28 core by the valence neutrons. Calculations in the pfgd model space reproduce well the experimental result indicating that the B(E2) strength predominantly corresponds to neutron excitations. The ratio of the neutron and proton multipole matrix elements supports such an interpretation
    corecore