366 research outputs found

    Static Friction between Elastic Solids due to Random Asperities

    Full text link
    Several workers have established that the Larkin domains for two three dimensional nonmetallic elastic solids in contact with each other at a disordered interface are enormously large. This implies that there should be negligible static friction per unit area in the macroscopic solid limit. The present work argues that the fluctuations in the heights of the random asperities at the interface that occur in the Greenwood-Williamson model can account for static friction.Comment: Contains some improvements in the treatment of the subjec

    N-Aryl-linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures

    Get PDF
    The fractionation of crude-oil mixtures through distillation is a large-scale, energy-intensive process. Membrane materials can avoid phase changes in such mixtures and thereby reduce the energy intensity of these thermal separations. With this application in mind, we created spirocyclic polymers with N-aryl bonds that demonstrated noninterconnected microporosity in the absence of ladder linkages. The resulting glassy polymer membranes demonstrated nonthermal membrane fractionation of light crude oil through a combination of class- and size-based “sorting” of molecules. We observed an enrichment of molecules lighter than 170 daltons corresponding to a carbon number of 12 or a boiling point less than 200°C in the permeate. Such scalable, selective membranes offer potential for the hybridization of energy-efficient technology with conventional processes such as distillation

    The Shaqadud Archaeological Project (Sudan): exploring prehistoric cultural adaptations in the Sahelian hinterlands

    Get PDF
    The authors present preliminary results from a new research project based in Jebel Shaqadud, Sudan. Their findings highlight the potential for this region's archaeological record to expand our understanding of the adaptation strategies used by human groups in arid north-east African environments away from rivers and lakes during the Holocene. Furthermore, they present exceptionally early radiocarbon dates that push postglacial human occupation in the eastern Sahel back to the twelfth millennium BP

    Ventilatory muscle strength, diaphragm thickness and pulmonary function in world-class powerlifters.

    Get PDF
    Resistance training activates the ventilatory muscles providing a stimulus similar to ventilatory muscle training. We examined the effects of elite powerlifting training upon ventilatory muscle strength, pulmonary function and diaphragm thickness in world-class powerlifters (POWER) and a control group (CON) with no history of endurance or resistance training, matched for age, height and body mass

    Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.

    Get PDF
    Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells

    Mu Insertions Are Repaired by the Double-Strand Break Repair Pathway of Escherichia coli

    Get PDF
    Mu is both a transposable element and a temperate bacteriophage. During lytic growth, it amplifies its genome by replicative transposition. During infection, it integrates into the Escherichia coli chromosome through a mechanism not requiring extensive DNA replication. In the latter pathway, the transposition intermediate is repaired by transposase-mediated resecting of the 5′ flaps attached to the ends of the incoming Mu genome, followed by filling the remaining 5 bp gaps at each end of the Mu insertion. It is widely assumed that the gaps are repaired by a gap-filling host polymerase. Using the E. coli Keio Collection to screen for mutants defective in recovery of stable Mu insertions, we show in this study that the gaps are repaired by the machinery responsible for the repair of double-strand breaks in E. coli—the replication restart proteins PriA-DnaT and homologous recombination proteins RecABC. We discuss alternate models for recombinational repair of the Mu gaps

    Detecting unilateral phrenic paralysis by acoustic respiratory analysis

    Get PDF
    The consequences of phrenic nerve paralysis vary from a considerable reduction in respiratory function to an apparently normal state. Acoustic analysis of lung sound intensity (LSI) could be an indirect non-invasive measurement of respiratory muscle function, comparing activity on the two sides of the thoracic cage. Lung sounds and airflow were recorded in ten males with unilateral phrenic paralysis and ten healthy subjects (5 men/5 women), during progressive increasing airflow maneuvers. Subjects were in sitting position and two acoustic sensors were placed on their back, on the left and right sides. LSI was determined from 1.2 to 2.4 L/s between 70 and 2000 Hz. LSI was significantly greater on the normal (19.3±4.0 dB) than the affected (5.7±3.5 dB) side in all patients (p = 0.0002), differences ranging from 9.9 to 21.3 dB (13.5±3.5 dB). In the healthy subjects, the LSI was similar on both left (15.1±6.3 dB) and right (17.4±5.7 dB) sides (p = 0.2730), differences ranging from 0.4 to 4.6 dB (2.3±1.6 dB). There was a positive linear relationship between the LSI and the airflow, with clear differences between the slope of patients (about 5 dB/L/s) and healthy subjects (about 10 dB/L/s). Furthermore, the LSI from the affected side of patients was close to the background noise level, at low airflows. As the airflow increases, the LSI from the affected side did also increase, but never reached the levels seen in healthy subjects. Moreover, the difference in LSI between healthy and paralyzed sides was higher in patients with lower FEV1 (%). The acoustic analysis of LSI is a relevant non-invasive technique to assess respiratory function. This method could reinforce the reliability of the diagnosis of unilateral phrenic paralysis, as well as the monitoring of these patients.Peer ReviewedPostprint (published version

    Nasopharyngeal Colonization and Invasive Disease Are Enhanced by the Cell Wall Hydrolases LytB and LytC of Streptococcus pneumoniae

    Get PDF
    Background: Streptococcus pneumoniae is a common colonizer of the human nasopharynx and one of the major pathogens causing invasive disease worldwide. Dissection of the molecular pathways responsible for colonization, invasion, and evasion of the immune system will provide new targets for antimicrobial or vaccine therapies for this common pathogen. Methodology/Principal Findings: We have constructed mutants lacking the pneumococcal cell wall hydrolases (CWHs) LytB and LytC to investigate the role of these proteins in different phases of the pneumococcal pathogenesis. Our results show that LytB and LytC are involved in the attachment of S. pneumoniae to human nasopharyngeal cells both in vitro and in vivo. The interaction of both proteins with phagocytic cells demonstrated that LytB and LytC act in concert avoiding pneumococcal phagocytosis mediated by neutrophils and alveolar macrophages. Furthermore, C3b deposition was increased on the lytC mutant confirming that LytC is involved in complement evasion. As a result, the lytC mutant showed a reduced ability to successfully cause pneumococcal pneumonia and sepsis. Bacterial mutants lacking both LytB and LytC showed a dramatically impaired attachment to nasopharyngeal cells as well as a marked degree of attenuation in a mouse model of colonization. In addition, C3b deposition and phagocytosis was more efficient for the double lytB lytC mutant and its virulence was greatly impaired in both systemic and pulmonary models of infection. Conclusions/Significance: This study confirms that the CWHs LytB and LytC of S. pneumoniae are essential virulence factor
    • …
    corecore