395 research outputs found

    Are All Dentiform Teeth with Simulated Caries the Same? A Six-Year Retrospective Study in Preclinical Operative Dentistry

    Get PDF
    Dentiform teeth with simulated caries (DTSC), frequently used in preclinical courses, should show no variability in the amount of simulated caries from tooth to tooth. However, the level of caries variability among DTSC is currently unknown. The aim of this study was to assess the variation in simulated caries levels in one group of DTSC and determine whether variation among DTSC impacted the preclinical performance of dental students. In the study, 80 commercially available mandibular first molar DTSC with simulated mesio-occluso-distal caries were sectioned in coronal (n=40) and sagittal (n=40) planes where the caries depth/width was greatest. Section images were analyzed for variation in levels of simulated caries using image-processing software. Three years of practical performance data using DTSC were compared with three years of practical performance data using dentiform teeth without simulated caries, for a total of six years (students' performance on two exams, Practical 1 and Practical 2). The results showed that 70% of the coronally sectioned teeth had manufacturing defects that resulted in caries overextension at the dentino-enamel junctions (DEJs). Overextensions were found at the DEJ in 41.3% of the sagittally sectioned teeth. There was a statistically significant decrease in Practical 1 performance of the students who used DTSC as compared with students who used teeth without simulated caries (p=0.0001); there was no statistically significant difference on Practical 2 performance. Of the DTSC evaluated in this study, 56.6% contained manufacturing defects, and more than 80% were found to have excessive caries variation. Prediction of which DTSC will have caries overextension is not possible. Students preparing DTSC that contain caries overextension are therefore at increased risk of receiving undeserved negative summative assessment on practical examinations

    Perigenual anterior cingulate morphology covaries with perceived social standing

    Get PDF
    Low socioeconomic status (SES) increases the risk for developing psychiatric and chronic medical disorders. A stress-related pathway by which low SES may affect mental and physical health is through the perception of holding a low social standing, termed low subjective social status. This proposal implicates overlapping brain regions mediating stress reactivity and socioemotional behaviors as neuroanatomical substrates that could plausibly link subjective social status to health-related outcomes. In a test of this proposal, we used a computational structural neuroimaging method (voxel-based morphometry) in a healthy community sample to examine the relationships between reports of subjective social status and regional gray matter volume. Results showed that after accounting for potential demographic confounds, subclinical depressive symptoms, dispositional forms of negative emotionality and conventional indicators of SES, self-reports of low subjective social status uniquely covaried with reduced gray matter volume in the perigenual area of the anterior cingulate cortex (pACC)—a brain region involved in experiencing emotions and regulating behavioral and physiological reactivity to psychosocial stress. The pACC may represent a neuroanatomical substrate by which perceived social standing relates to mental and physical health

    A Hydrophobic Gate in an Ion Channel: The Closed State of the Nicotinic Acetylcholine Receptor

    Full text link
    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the `Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid, and serotonin. Cryo-electron microscopy has yielded a three dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height ca. 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A radius hydrophobic pore can form a functional barrier to the permeation of a 1 A radius Na+ ion. Using a united atom force field for the protein instead of an all atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.Comment: Accepted by Physical Biology; includes a supplement and a supplementary mpeg movie can be found at http://sbcb.bioch.ox.ac.uk/oliver/download/Movies/watergate.mp

    Misconceptions about Mirror-Induced Motor Cortex Activation

    Get PDF
    Observation of self-produced hand movements through a mirror, creating an illusion of the opposite hand moving, was recently reported to induce ipsilateral motor cortex activation, that is, motor cortex activation for the hand in rest. The reported work goes far beyond earlier work on motor cortex activation induced by action observation, by implying a complete reversal of contralateral and ipsilateral motor cortex activation under mirror view conditions. Such a reversal would represent an unprecedented degree of neural plasticity. We considered such a reversal physiologically implausible and conducted a study with an improved design. The results refute the reversal of contralateral and ipsilateral motor cortex activation under mirrored viewing conditions as methodologically unsound. The investigation confirmed, however, more subtle expressions of motor cortical activity induced by self-produced movements observed through a mirror

    Intelligent data analysis to interpret major risk factors for diabetic patients with and without ischemic stroke in a small population

    Get PDF
    This study proposes an intelligent data analysis approach to investigate and interpret the distinctive factors of diabetes mellitus patients with and without ischemic (non-embolic type) stroke in a small population. The database consists of a total of 16 features collected from 44 diabetic patients. Features include age, gender, duration of diabetes, cholesterol, high density lipoprotein, triglyceride levels, neuropathy, nephropathy, retinopathy, peripheral vascular disease, myocardial infarction rate, glucose level, medication and blood pressure. Metric and non-metric features are distinguished. First, the mean and covariance of the data are estimated and the correlated components are observed. Second, major components are extracted by principal component analysis. Finally, as common examples of local and global classification approach, a k-nearest neighbor and a high-degree polynomial classifier such as multilayer perceptron are employed for classification with all the components and major components case. Macrovascular changes emerged as the principal distinctive factors of ischemic-stroke in diabetes mellitus. Microvascular changes were generally ineffective discriminators. Recommendations were made according to the rules of evidence-based medicine. Briefly, this case study, based on a small population, supports theories of stroke in diabetes mellitus patients and also concludes that the use of intelligent data analysis improves personalized preventive intervention

    Gating at the Mouth of the Acetylcholine Receptor Channel: Energetic Consequences of Mutations in the αM2-Cap

    Get PDF
    Gating of nicotinic acetylcholine receptors from a C(losed) to an O(pen) conformation is the initial event in the postsynaptic signaling cascade at the vertebrate nerve-muscle junction. Studies of receptor structure and function show that many residues in this large, five-subunit membrane protein contribute to the energy difference between C and O. Of special interest are amino acids located at the two transmitter binding sites and in the narrow region of the channel, where C↔O gating motions generate a low↔high change in the affinity for agonists and in the ionic conductance, respectively. We have measured the energy changes and relative timing of gating movements for residues that lie between these two locations, in the C-terminus of the pore-lining M2 helix of the α subunit (‘αM2-cap’). This region contains a binding site for non-competitive inhibitors and a charged ring that influences the conductance of the open pore. αM2-cap mutations have large effects on gating but much smaller effects on agonist binding, channel conductance, channel block and desensitization. Three αM2-cap residues (αI260, αP265 and αS268) appear to move at the outset of channel-opening, about at the same time as those at the transmitter binding site. The results suggest that the αM2-cap changes its secondary structure to link gating motions in the extracellular domain with those in the channel that regulate ionic conductance

    Space Telescope and Optical Reverberation Mapping Project. VI. : reverberating disk models for NGC 5548

    Get PDF
    D.A.S. and K.D.H. acknowledge support from the UK Science and Technology Facilities Council through grant ST/K502339/1 and ST/J001651/1.We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Å to 9157 Å) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36° ± 10°, temperature T1 =(44 ± 6) x 103 K at 1 light day from the black hole, and a temperature–radius slope (T α r-α) of α = 0.99 ± 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/LEdd=0.1.PostprintPeer reviewe
    corecore