891 research outputs found

    Inside the Japanese Stock Market: An Assessment

    Get PDF

    Inside the Japanese Stock Market: An Assessment

    Get PDF

    From source to sink in central Gondwana: Exhumation of the Precambrian basement rocks of Tanzania and sediment accumulation in the adjacent Congo basin

    Get PDF
    Apatite fission track (AFT) and (U-Th)/He (AHe) thermochronometry data are reported and used to unravel the exhumation history of crystalline basement rocks from the elevated (>1000 m above sea level) but low-relief Tanzanian Craton. Coeval episodes of sedimentation documented within adjacent Paleozoic to Mesozoic basins of southern Tanzania and the Congo basin of the Democratic Republic of Congo indicate that most of the cooling in the basement rocks in Tanzania was linked to erosion. Basement samples were from an exploration borehole located within the craton and up to 2200 m below surface. Surface samples were also analyzed. AFT dates range between 317 ± 33 Ma and 188 ± 44 Ma. Alpha (Ft)-corrected AHe dates are between 433 ± 24 Ma and 154 ± 20 Ma. Modeling of the data reveals two important periods of cooling within the craton: one during the Carboniferous-Triassic (340–220 Ma) and a later, less well constrained episode, during the late Cretaceous. The later exhumation is well detected proximal to the East African Rift (70 Ma). Thermal histories combined with the estimated geothermal gradient of 9°C/km constrained by the AFT and AHe data from the craton and a mean surface temperature of 20°C indicate removal of up to 9 ± 2 km of overburden since the end of Paleozoic. The correlation of erosion of the craton and sedimentation and subsidence within the Congo basin in the Paleozoic may indicate regional flexural geodynamics of the lithosphere due to lithosphere buckling induced by far-field compressional tectonic processes and thereafter through deep mantle upwelling and epeirogeny tectonic processes

    Photoheliograph study for the Apollo telescope mount

    Get PDF
    Photoheliograph study for Apollo telescope moun

    A reference architecture for multi-level SLA management

    Get PDF
    There is a global trend towards service-orientation, both for organizing business interactions but also in modern IT architectures. At the business-level, service industries are becoming the dominating sector in which solutions are flexibly composed out of networked services. At the IT level, the paradigms of Service-Oriented Architecture and Cloud Computing realize service-orientation for both software and infrastructure services. Again, flexible composition across different layers is a major advantage of this paradigm. Service Level Agreements (SLA) are a common approach for specifying the exact conditions under which services are to be delivered and, thus, are a prerequisite for supporting the flexible trading of services. However, typical SLAs are just specified at a single layer and do not allow service providers to manage their service stack accordingly. They have no insight on how SLAs at one layer translate to metrics or parameters at the various lower layers of the service stack. In this paper, we present a reference architecture for a multi-level SLA management framework. We discuss the fundamental concepts and detail the main architectural components and interfaces. Furthermore, we show how the framework can be flexibly used for different industrial scenarios

    Modular DSLs for flexible analysis: An e-Motions reimplementation of Palladio

    Get PDF
    We address some of the limitations for extending and validating MDE-based implementations of NFP analysis tools by presenting a modular, model-based partial reimplementation of one well-known analysis framework, namely the Palladio Architecture Simulator. We specify the key DSLs from Palladio in the e-Motions system, describing the basic simulation semantics as a set of graph transformation rules. Di erent properties to be analysed are then encoded as separate, parametrised DSLs, independent of the de nition of Palladio. These can then be composed with the base Palladio DSL to generate speci c simulation environments. Models created in the Palladio IDE can be fed directly into this simulation environment for analysis. We demonstrate two main benefits of our approach: 1) The semantics of the simulation and the nonfunctional properties to be analysed are made explicit in the respective DSL speci cations, and 2) because of the compositional de nition, we can add de nitions of new non-functional properties and their analyses.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Effects of Frontal Transcranial Direct Current Stimulation on Emotional State and Processing in Healthy Humans

    Get PDF
    The prefrontal cortex is involved in mood and emotional processing. In patients suffering from depression, the left dorsolateral prefrontal cortex (DLPFC) is hypoactive, while activity of the right DLPFC is enhanced. Counterbalancing these pathological excitability alterations by repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) improves mood in these patients. In healthy subjects, however, rTMS of the same areas has no major effect, and the effects of tDCS are mixed. We aimed to evaluate the effects of prefrontal tDCS on emotion and emotion-related cognitive processing in healthy humans. In a first study, we administered excitability-enhancing anodal, excitability-diminishing cathodal, and placebo tDCS to the left DLPFC, combined with antagonistic stimulation of the right frontopolar cortex, and tested acute emotional changes by an adjective checklist. Subjective emotions were not influenced by tDCS. Emotional face identification, however, which was explored in a second experiment, was subtly improved by a tDCS-driven excitability modulation of the prefrontal cortex, markedly by anodal tDCS of the left DLPFC for positive emotional content. We conclude that tDCS of the prefrontal cortex improves emotion processing in healthy subjects, but does not influence subjective emotional state

    Cyanide Binding to [FeFe]-Hydrogenase Stabilizes the Alternative Configuration of the Proton Transfer Pathway

    Get PDF
    Hydrogenases are H2 converting enzymes that harbor catalytic cofactors in which iron (Fe) ions are coordinated by biologically unusual carbon monoxide (CO) and cyanide (CN−) ligands. Extrinsic CO and CN−, however, inhibit hydrogenases. The mechanism by which CN− binds to [FeFe]-hydrogenases is not known. Here, we obtained crystal structures of the CN−-treated [FeFe]-hydrogenase CpI from Clostridium pasteurianum. The high resolution of 1.39 Å allowed us to distinguish intrinsic CN− and CO ligands and to show that extrinsic CN− binds to the open coordination site of the cofactor where CO is known to bind. In contrast to other inhibitors, CN− treated crystals show conformational changes of conserved residues within the proton transfer pathway which could allow a direct proton transfer between E279 and S319. This configuration has been proposed to be vital for efficient proton transfer, but has never been observed structurally
    corecore