
Modular DSLs for flexible analysis:
An e-Motions reimplementation of Palladio

Antonio Moreno-Delgado1, Francisco Durán1, Steffen Zschaler2, and
Javier Troya3

1 Universidad de Málaga
{amoreno,duran}@lcc.uma.es

2 King’s College London
szschaler@acm.org

3 Vienna University of Technology
troya@big.tuwien.ac.at

Abstract. We address some of the limitations for extending and validat-
ing MDE-based implementations of NFP analysis tools by presenting a
modular, model-based partial reimplementation of one well-known anal-
ysis framework, namely the Palladio Architecture Simulator. We specify
the key DSLs from Palladio in the e-Motions system, describing the ba-
sic simulation semantics as a set of graph transformation rules. Different
properties to be analysed are then encoded as separate, parametrised
DSLs, independent of the definition of Palladio. These can then be com-
posed with the base Palladio DSL to generate specific simulation envi-
ronments. Models created in the Palladio IDE can be fed directly into
this simulation environment for analysis. We demonstrate two main ben-
efits of our approach: 1) The semantics of the simulation and the non-
functional properties to be analysed are made explicit in the respective
DSL specifications, and 2) because of the compositional definition, we
can add definitions of new non-functional properties and their analyses.

1 Introduction

It has been generally recognised that the non-functional properties (NFPs)—for
example, performance or reliability—of a system are central to the success of
a software development project. The later in the process an error in NFPs is
discovered, the more costly will it be to repair. There is, therefore, a need for
early predictive analysis of NFPs.

Model-driven engineering (MDE) advocates the use of models as the primary
artefacts in software development. It has been recognised that this provides
opportunities for very early analysis of NFPs based on early design models.
These models can often be transformed into analysis models (e.g., in the form of
Petri nets or queuing networks) that can be analysed or simulated by standard
tooling [1–3, 7–9].

Typically, in these approaches a design model is translated into an analysis
model which is then evaluated by a dedicated analysis tool. Alternatively, the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62901455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

design model is translated into a simulation of the system to be built. In both
cases, however, the semantics of the non-functional property to be analysed
and of the analysis technique are only represented implicitly as encoded in the
transformations or analysis tools. This causes two problems:

1. Validation of analysis. As there is no explicit specification of the analysis
nor a high-level representation of the NFPs to be analysed, it is difficult for
users to be sure that they are analysing the correct property of their system
(see, e.g., [12] for a discussion of some of the subtleties that might need to be
considered). Conversely, it is also very difficult for tool providers to validate
the correctness of their tooling, which has a direct impact on the correctness
of their predictions.

2. Maintainability and extensibility of analyses. The tool implementations, es-
pecially in the transformations producing simulations, often tangle code con-
cerned with different NFPs. For example, the transformations used in the
Palladio Architecture Simulator [9] tangle code for performance and relia-
bility simulations. This makes the code very difficult to maintain and, in
particular, extend to support new NFPs.

In previous work [6, 10, 17], we have explored the modular definition of non-
functional properties as parametrised domain specific languages (DSLs) in the
e-Motions framework [11]. In the present paper, we demonstrate how these ideas
can be integrated with predictive analysis of architectural software models by
providing a modular reimplementation of a substantive part of the Palladio
Architecture Simulator [9]. In particular, we have re-implemented the Palladio
Component Model [3], its workload model, and parts of its stochastic expressions
model. However, instead of implementing transformations to analysis models or
simulators as done in Palladio, we have explicitly modelled the simulations as
graph transformations in the e-Motions framework. Each NFP to be analysed is
then modelled as an independent, parametrised DSL ready to be composed with
the base Palladio model. This addresses the above two problems in the following
ways:

1. There is an explicit specification of both the simulation mechanism and the
NFPs to be analysed. These models can be inspected and reasoned about
separately giving more assurance of correctness of the simulation results.

2. Modular definition of NFPs as separate, parametrized DSLs allows its reuse,
but also makes it easy to define additional NFPs to be analysed. For a
particular analysis problem, the relevant NFP DSLs can then be selected
from a library and composed as required. Our previous work in [5] provides
guarantees for preservation of semantics under composition, that is, the con-
sideration of additional NFPs (satisfying certain restrictions) do not change
the behaviour of the system being modeled.

While our approach may not be as performant for large models as the native
Palladio implementation, its modular and model-based nature mean that new
analyses can be prototyped very effectively. These might then still be translated



3

into native implementations tightly integrated with Palladio where efficiency of
analysis is a concern over full validation of analysis. We present in this paper
the specification of the NFPs response time and throughput, but new types of
analysis could be easily added. One such analysis that could be easily prototyped
in our approach is support for dynamic systems — this possibility has already
been explored in [17]. In e-Motions, these effectively amount to a number of
additional rewrite rules for the base model.

The remainder of this paper is structured as follows. Section 2 provides some
background on the two MDE frameworks our work relies on, namely Palladio
and e-Motions. Section 3 explains how the Palladio DSL has been defined in the
e-Motions system. Section 4 describes the way observers are defined and how
they are woven with the Palladio system to enrich the definition of its behavior
for the observation of NFPs. Section 5 illustrates our approach on a concrete
example and compares the results obtained by Palladio and by its e-Motions
counterpart. We wrap up with some conclusions and future work in Section 6.

2 Preliminaries

Our work is based on two MDE frameworks: We use Palladio [9], and in particular
the Palladio Component Model (PCM) [3], to allow modelling of component-
based systems and their performance-relevant properties; and we use e-Motions
to implement simulations of these systems’ performance properties (as well as
of other non-functional properties). In this section, we provide some background
on both frameworks to ground the discussion that will follow.

2.1 Palladio

The Palladio Architecture Simulator [9] is a predictive software analysis tool
developed by the group around Ralf Reussner at KIT in Karlsruhe, Germany.
It consists of a number of metamodels, foremost the Palladio Component Model
(PCM) [3], that allow the high-level modelling of component-based architectures
and their properties relevant for performance and reliability analysis. Instances
of these metamodels are then transformed in preparation for analysis. Palladio
supports two kinds of predictive analyses: 1) by transformation into a program
that runs a simulation of the architecture’s behaviour and 2) by transforming to
a formalism more amenable to analysis—for example, Queuing Petri Nets [14]. In
both cases, the semantics of the models, and in particular of the non-functional
properties being analysed, is encapsulated in the transformations. This makes
it very difficult to understand and validate these semantics. This is particularly
problematic as more non-functional properties are supported: the current trans-
formations support performance and reliability, but already are quite complex.
Palladio consists of over 4 million lines of code written in 12 languages.1

Fig. 1 shows a very simple example of a component specification in Palladio.
It shows a so-called resource-demanding service-effect specification (RDSEFF)

1 Based on data obtained from http://www.ohloh.net/p/palladio on Feb. 4, 2014.



4

Fig. 1. Component model

Fig. 2. Usage model

describing the key performance-relevant elements of a component’s behaviour. In
particular, Fig. 1 shows that the control flow in our component may branch into
either of three flows, with different CPU demands for each flow. Each branch
is associated with a particular branch probability to indicate the likelihood of
a particular branch being taken. This is the kind of information required to
perform execution-time analysis on the component’s behaviour as is standard in
software performance engineering (see, e.g., [13]). In addition, we could model
failure information to support reliability analysis.

Fig. 1 is only half the story. We also need to provide information about how
the component is used to be able to provide useful predictions of performance.
In Fig. 2, we see an example usage model specifying a particular workload for
our component. This part of the model uses standard workload terminology to
specify an open workload with an inter-arrival time of 2 time units. When a
request arrives, there is a delay of 5 units loading the application, after which
a call to our component is executed. With these models we now have enough
information to run a first basic simulation of our system.

The Palladio Simulator offers the results of the analysis of performance and
reliability of the system being analysed in different formats. For example, for
the above model, it gives the mean response time and confidence intervals in
Table 1. The chart in Fig. 3 represents the cumulative distribution function of



5

Fig. 3. Cumulative distribution function of the system’s response time

the system’s response time. Since the CPU resource gets saturated, the response
time keeps increasing along time. For 1,000 runs, tasks take up to 90 time units.

Table 1. Palladio: results of Plain Batch Means Algorithm

Mean value: 41.97139713971397
Confidence value alpha: 0.9
Upper bound: 52.17187782288832
Lower bound: 31.770916456539624

2.2 The e-Motions System

e-Motions [11] is a graphical framework that supports the specification, simula-
tion, and formal analysis of real-time systems. It provides a way to graphically
specify the dynamic behaviour of DSLs using their concrete syntax, making this
task very intuitive. The abstract syntax of a DSL is specified as an Ecore meta-
model, which defines all relevant concepts—and their relations—in the language.
Its concrete syntax is given by a GCS (Graphical Concrete Syntax) model, which
attaches an image to each language concept. Then, its behaviour is specified with
(graphical) in-place model transformations.

e-Motions provides a model of time, supporting features like duration, peri-
odicity, etc., and mechanisms to state action properties. From a DSL definition
e-Motions generates an executable Maude [4] specification which can be used for
simulation and analysis. Other tools in the Maude formal environment, as its
model checker or its reachability analysis tool, can also be used on this specifi-
cation.

In-place transformations are defined by rules, each of which represents a pos-
sible action of the system. These rules are of the form [NAC]∗ × LHS → RHS,



6

where LHS (left-hand side), RHS (right-hand side) and NAC (negative appli-
cation conditions) are model patterns that represent certain (sub-)states of the
system. The LHS and NAC patterns express the conditions for the rule to be ap-
plied, whereas the RHS represents the effect of the corresponding action. A LHS
may also have positive conditions, which are expressed, as any expression in the
RHS, using OCL. Thus, a rule can be applied, i.e., triggered, if a match of the
LHS is found in the model, its conditions are satisfied, and none of its NAC pat-
terns occurs. If several matches are found, one of them is non-deterministically
chosen and applied, giving place to a new model where the matching objects
are substituted by the appropriate instantiation of its RHS pattern. The trans-
formation of the model proceeds by applying the rules on sub-models of it in a
non-deterministic order, until no further transformation rule is applicable.

In e-Motions, there are two types of rules to specify time-dependent behav-
ior, namely, atomic and ongoing rules. Atomic rules represent atomic actions
with a duration, which is specified by an interval of time. Atomic rules with
duration zero are called instantaneous rules. Ongoing rules represent actions
that progress continuously over time while the rule’s preconditions (LHS and
not NACs) hold. Both atomic and ongoing rules can be scheduled, or be given
an execution interval.

3 Palladio into e-Motions

The PCM is a DSL [3], and therefore we may define it in e-Motions. As for any
DSL, the definition of the PCM includes its abstract syntax, its concrete syntax
and its behavior.

Since the Palladio system has been developed following MDE principles, and
specifically it is implemented using the Eclipse Modeling Framework (EMF),
its metamodel may be directly used as abstract syntax definition of Palladio
in e-Motions. Palladio models consists of several views, namely UsageModel,
System, etc., corresponding to the different developer roles. These models are
conformant to metamodels Core PCM, StoEx, Units, ... used by the different
Eclipse plug-ins in the PCM Bench.2

The concrete syntax is provided by a GCS model in which each concept in
the abstract syntax of the DSL being defined is linked to an image. Since these
images are used to graphically represent Palladio models in e-Motions, we have
used the same images that the PCM Bench uses to represent these concepts.
This way, we maintain the PCM’s look in the e-Motions definition.

The PCM Bench supports the design of the models corresponding to the
different views that each developer role has to fill. However, these models de-
fine the architecture of a system. Transformations of PCM models into queueing
network models or stochastic process algebra provide the necessary predictive

2 The metamodel provided to e-Motions must have a single package in a single file.
Since the PCM metamodel is defined in several packages in several files, we have
developed a higher-order transformation to prepare the input models.



7

analysis for the PCM models. Thus, the semantics of the properties to be anal-
ysed as well as of the analysis methods themselves are implicitly encoded in the
transformations and support tooling.

In e-Motions, we describe how systems evolve by describing all possible
changes of the models by corresponding visual rewrite rules, that is, time-
aware in-place transformation rules. Since the PCM metamodel only specifies
those concepts relevant for the PCM language and the models obtained from
the PCM Bench cannot be directly simulated or analyzed, we have conserva-
tively enriched the PCM metamodel with new concepts to handle the control
flow. We call this new metamodel Palladio*. Specifically, Palladio* has an ad-
ditional metamodel Token, which includes two classes SToken and CToken. The
former is specified at the system model (UsageModel) level, and the latter at the
component model (RDSEFF) level. Both SToken and CToken classes have a Bool
attribute completed, which states where an action with this Token is accom-
plished. A reference—with cardinality *—to the Token class has been added to
AbstractUserAction and AbstractSEFFAction, respectively. An ordered ref-
erence queue from ProcessingResourceSpecification to CToken, with multi-
plicity * is used as a queue in which actions wait until resources of the correspond-
ing type are available. Fig. 4 shows the Token metamodel and the references from
classes of PCM to SToken and CToken.

Fig. 4. Token metamodel.

We may visualize that the execution of a Palladio model has a token mov-
ing around such model. An action with a token has the control of execution
— the completed attribute of a Token object becomes true once the action is
completed, then it can be moved to its successor action. In fact, there might be
several concurrent executions, since new tasks may keep arriving to the system,
depending on its work load. The execution of each of these tasks proceeds inde-
pendently, as far as the required resources are available — modelled by the rule
in Fig. 6 below.

Since the extension of the metamodel has been done in a conservative way,
every model conforming to the Palladio metamodel is also conforming to the
Palladio* metamodel. As we will see in Section 5, this will allow us to take
models generated in the PCM bench directly into e-Motions, and use them to
perform simulations in the e-Motions definition of Palladio.

In Palladio, an open workload specifies system usage intensity with an inter-
arrival time, i.e., the time between two user arrivals at the system, as a random



8

(a) OpenWorkload rule. (b) Component call.

Fig. 5. New request rule specification.

variable with some probability distribution. It models an infinite stream of users
arriving at a system, which execute their scenario, and then leave the system.
Fig. 5(a) shows the OpenWorkloadSpec rule, which specifies the behaviour of
a UsageScenario usSc with an OpenWorkload ow. When the rule is triggered,
a new system token is added to the first action of the system, i.e., the start

action. Moreover, the rule is fired every owRate, which is a local variable whose
value is given by ow’s random variable.

A ScenarioBehaviour, which is included in a UsageScenario, is composed
of a set of actions, which can be Start, Stop, EntryLevelSystemCall, Branch,
and Loop. These actions are modeled in e-Motions, since they are used to describe
the behaviour of system components. Components are independently specified
in Palladio, and can be instantiated from a ScenarioBehaviour by Signatures.
The EntryLevelSystemCall action represents the invocation of a component.

Fig. 5(b) shows our definition of EntryLevelSystemCall in e-Motions. If a
(sub)-state matches the LHS of the rule, the SToken object associated to the
EntryLevelSystemCall action remains in this action, while a new CToken is
created and linked to the start action of the invoked component (effectively
building up a call stack). As the rule’s header shows, this rule is instantaneous
(it takes zero time).

Fig. 6 shows the rewrite rule specifying the behaviour of an InternalAction,
which represents the execution of an internal activity by a component service,
possibly using some resources, like HDD or CPU. In Palladio, these executions
present a high-level abstraction, and the resource demands are expressed as a
single stochastic expression. The duration of the action depends on the param-
eters of the demanded resources. Resources are limited by the available number



9

Fig. 6. Internal Action specification.

of resources of that type (PRS.numberOfReplicas). Tokens are served follow-
ing an FCFS strategy by using a queue associated to each resource type. Only
the first PRS.numberOfReplicas tokens in the queue PRT.queue get to be exe-
cuted. Once an internal action is executed, its token is removed from the queue
(PRT.queue->excluding(t)).

The complete e-Motions definition of the Palladio DSL is available at http:

//atenea.lcc.uma.es/index.php/Main_Page/Resources/E-motions/Palladio.

Once the whole DSL has been defined, and given a model as initial state, it may be
simulated by applying the rules describing its behaviour. This model does not collect
information on NFPs, and therefore is not ready for performance analysis. We enrich
them later, as explained in the following section.

4 NFPs by Observation

In previous work, we have proposed an approach for the specification and monitoring
of non-functional properties using observers [15, 16]. They are objects with which we
extend the e-Motions definition of systems for the analysis of NFPs by simulation, such
as mean and max cycle times, busy and idle cycles of operation units, throughput,
mean-time between failures, etc. We also explored in [6, 17] how to define observers
generically and independently from any system, so that they can afterwards be woven
and merged with different systems. Given systems described as DSLs and generic DSLs
defining the different observers, we can use these composition mechanisms to combine
them. The result is that we can use the combined enriched system DSL to monitor
NFPs of our systems.

We proved in [5] that, given very natural requirements on the observers and the
instantiating mappings, the system thus obtained was a conservative enrichment of the
original system, in the sense that the observers added do not change the behaviour of
the system.



10

Given an e-Motions definition of Palladio as the one presented in Section 3, we
can then enrich it with the definition of the observers we wish, which can be selected
from a library of generically specified observers. Specifically, we can select both those
observers that monitor non-functional properties available in the Palladio Simulator as
well as those that monitor other properties. The NFPs chosen can then be analysed by
simulation.

4.1 Generic Observers

We present in the first place a generic DSL for monitoring the response time, which is a
property included in the analysis made by Palladio. Response time can be defined as the
time that elapses since a request arrives to a system until it is served. Hence, the same
generic notion allows us to measure the response time of information packets being
delivered through a network, the number of cars being manufactured in a production
line, the number of passengers checking-in in an airport, etcetera. Given the description
of a system, in order to measure response time, we basically need to register the time
at which requests appear in the system, and the time at which they are completed.
With this data and a simple calculation, we can easily get the response time.

A generic DSL achieving this is shown in Fig. 7. Its abstract syntax (the metamodel
in Fig. 7(a)) contains three generic and two concrete classes – generic classes are shown
with a shaded background. System, Serve and Request are parameter classes to be
instantiated by specific classes, as explained in Section 4.2. The System class represents
the whole system, which is composed of a set of Servers. These, in turn, can have
Requests that they have to process. The class RespTimeOb represents the observer for
measuring the response time. Its three attributes are explained with the behavioural
rules. Note that there is yet another observer in this metamodel, TimeStampOb, used
to store the times of incoming Requests.

The behaviour of this DSL is defined by the three in-place transformation rules
in Fig. 7, in which parametric concepts have no concrete syntax, they are depicted as
boxes, and have a shaded background. Observer objects have a concrete syntax, that
will also be used to depict them in the woven rules (see below). Rule CreateRespTOb

deals with the creation of the response time observer. Its LHS includes a condition
that avoids the creation of new observer objects if there is one, ensuring that only one
of these observers is created per instantiated object. In its RHS we can observe that
the observer is associated to the system. Rule RequestArrives generates a time stamp
observer whenever a new Request appears. The observer gets associated to the Request
and keeps the time at which it appears in the system — note the presence of the system
class Clock, which provides the current time. Finally, rule CompletedRequest computes
the response time every time a Request is consumed — the Request and its associated
observer have disappeared in the RHS. Attribute counter of RespTimeOb keeps the
number of completed Requests, while tAcc contains the addition of cycle times of all
Requests, i.e., the time they have spent in the system. Finally, attribute respT uses
the former two attributes to calculate the response time of the System.

Fig. 8 shows a DSL for the throughput observer.3 Throughput can be defined as
the average rate of requests processed by a system. Given the description of a system,
in order to measure this property, we basically need to be able to count the num-
ber of processed requests, and calculate its quotient with time. The abstract syntax
(metamodel in Fig. 8(a)) contains the same parametric classes as the one for response

3 Throughput is a property not available in the Palladio Simulator.



11

(a) Abstract syntax

(b) Behavior: CreateRespTOb (c) Behavior: RequestArrives

(d) Behavior: CompletedRequest

Fig. 7. Response Time observer DSL definition.

time and the ThroughputOb class that represents the observer. The counter attribute
stores the number of Requests that are completed, while thp is used to keep the actual
throughput.

Its behaviour is also defined by three transformation rules. The CreateThpOb rule
creates the observer, as the corresponding rule for the response time observer. Rule
UpdateCounter increases the counter attribute of the observer every time a Request

is served. Finally, we have an ongoing rule where the value of throughput is computed,
which keeps the value thp updated as time evolves.

4.2 Adding Observers to System Specifications

In order to introduce observers in our specifications in e-Motions, we need to weave
both the metamodel of a specific system with the generic metamodels of the observers,
and same thing for the behaviours. In other words, the parametric components of the
observers DSLs get instantiated with specific components. This is done by defining a
correspondences model [6, 10]. For example, for weaving the metamodel of response
time with the metamodel of our Palladio implementation in e-Motions, the Request



12

(a) Abstract syntax (b) Behavior: CreateThpOb

(c) Behavior: UpdateCounter (d) Behavior: UpdateTHP

Fig. 8. Throughput observer DSL definition.

class is mapped to Token. The weaving of metamodels is quite straightforward, and we
do not show the resulting metamodel due to space limitations. Let us focus here in the
weaving of rules.

Regarding rules, we basically need to map each rule in the source DSL to a rule
in the target one. The mapping defined for the metamodel does most of the rest.
The RequestArrives rule (Fig. 7(c)) is woven with the OpenWorkloadSpec rule of
our Palladio system (Fig. 7(a)), that represents the arrival of a new Token in the
system. Rule CreateRespTOb of the observer DSL is woven with an identity rule, trig-
gering the creation of observer objects if they were not already created. Finally, rule
CompletedRequest (Fig. 7(d)) is woven with the StopUsageModel rule, which just mod-
els the elimination of a token upon its arrival to a stop action.

A similar mapping is provided for the throughput observer: rules CreateThpOb and
UpdateTHP are woven to the identity rule, as CreateRespTOb, and rule UpdateCounter

is mapped to StopUsageModel.

The woven of the definitions of the response time and throughput observer DSLs
and the Palladio DSL results in a DSL whose metamodel is the Palladio metamodel
enriched with the additional classes as indicated in the mappings, and the rules defining
its behaviour enriched with the observer objects. Figs. 9(a) and 9(b) show the rules
OpenWorkLoad (Fig. 5(a)) and stop as resulting from the weaving process.

Using the same mechanisms these observers may be attached to other elements
of the model. For instance, we can in this way measure the response time of each
of the components in the system. Additional observers for other NFPs may similarly
considered.



13

(a) Enriched OpenWorkloadSpec rule (b) Ennriched StopUsageModel rule

Fig. 9. Woven rules.

Table 2. Case study’s e-Motions results

Mean System Response Time 43.6626
Throughput 0.4804

5 Evaluation

Once the e-Motions definition of the Palladio DSL has been enriched with the desired
observers, we may use it for analysing its performance by simulation. More specifically,
since the Palladio* metamodel is a conservative enrichment of the Palladio metamodel,
we may take models designed in the Palladio Bench and load them into e-Motions for
simulation using the e-Motions definition of Palladio. The observers of the system
collect information along the simulation that can be queried.

Following this procedure, we have simulated the Palladio model presented in Sec-
tion 1 in the e-Motions definition of Palladio. Table 2 summarizes the obtained results
(for a simulation of 1000 tasks). Fig. 10 shows the cumulative distribution function for
the simulation in e-Motions. Fig. 11 shows the response time as a function of the time
when a request entered the system, based on the e-Motions output. Since the queues
get saturated response times keep increasing.

6 Conclusions and future work

Non-functional properties of software, such as performance, reliability, or security, can
determine success or failure of software systems. It is therefore important to be able to
provide estimates of these properties as early as possible in the development process.
Model-driven engineering has been viewed as a promising technology for addressing this



14

Fig. 10. Cumulative distribution function for the simulation in e-Motions.

Fig. 11. Response Time obtained from e-Motions output.

problem because of its ability to transform early design models into analysis models.
However, the semantics of the properties to be analysed as well as of the analysis
methods themselves are typically encoded implicitly in the transformations and support
tooling. Often, these encodings tangle semantics for multiple properties to be analysed.
As a result, it becomes difficult a) to add new properties and analyses and b) to validate
the transformation and analysis implementations themselves.

We have addressed this problem by presenting a modular, model-based partial
reimplementation of one well-known analysis framework—the Palladio Architecture
Simulator. We have specified key DSLs from Palladio in e-Motions, describing the
basic simulation semantics as a set of graph-transformation rules. Different properties
to be analysed have been encoded as separate, parametrised DSLs, independent of the
definition of Palladio. We have then composed these DSLs with the base Palladio DSL
to generate specific simulation environments. Models created in the Palladio IDE can
be fed directly into our simulation environment for analysis.



15

We currently provide support for key Palladio features for the definition of usage
models (start, stop, delay, and entry level system call) and component models (start,
stop, branch with any number of probabilistic branches, internal action, and CPU
specifications). Currently, we only have partial support of stochastic variables. Their
full support is left as future work.

We have demonstrated two main benefits of our approach: 1) The semantics of
the simulation and the non-functional properties to be analysed are made explicit in
the respective DSL specifications, and 2) because of the compositional definition, it
is easy to add definitions of new non-functional properties and their analyses. More
importantly, our proposal provides a place were to experiment with new features and
tailor solutions for specific problems at a very low development cost.

As future work, we plan to incorporate additional features to our definition of
Palladio, as, for example, full resource models, and failures and reliability analysis.
Indeed, we foresee generic definitions of selectable features, such as resource handling
and deployment strategies, etc. We also plan to experiment with other NFPs, such
as reliability or security, and to use our flexible setting for the analysis of dynamic
systems, where components and resources are dynamically added to or removed from
the system under study. For instance, in [17], we showed how to maintain the value
of cycle time around a specific goal. The dynamic system consisted of a production
line where machines had two modes of processing parts: fast and slow. In this case,
when the cycle time of parts was higher than the goal, the speed of the machines was
increased. The opposite occurred when the parts were produced too fast. This self-
adaptive behaviour was achieved by consulting the value of the cycle time observer in
simulating time.

References

1. Balsamo, S., DiMarco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Transactions on Software En-
gineering 30(5), 295–310 (May 2004)

2. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance prediction of
component-based systems: A survey from an engineering perspective. In: Dagstuhl
Seminar 04511: Architecting Systems with Trustworthy Components. LNCS, vol.
3938. Springer (2006)

3. Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with
the Palladio component model. In: Proc. 6th Int’l Workshop on Software and
Performance (WOSP’07). ACM (2007)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, LNCS, vol. 4350. Springer (2007)

5. Durán, F., Orejas, F., Zschaler, S.: Behaviour protection in modular rule-based
system specifications. In: Mart́ı-Oliet, N., Palomino, M. (eds.) Recent Trends in
Algebraic Development Techniques. LNCS, vol. 7841. Springer (2013)

6. Durán, F., Zschaler, S., Troya, J.: On the reusable specification of non-functional
properties in DSLs. In: Czarnecki, K., Hedin, G. (eds.) Proc. 5th Int’l Conf. on
Software Language Engineering (SLE’12). LNCS, vol. 7745, pp. 332–351. Springer
(2013)

7. Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application
of tracing techniques in model-driven performance engineering. In: 4th ECMDA
Traceability Workshop (2008)



16

8. Grassi, V., Mirandola, R.: A model-driven approach to predictive non functional
analysis of component-based systems. In: Bruel, J.M., Georg, G., Hussmann, H.,
Ober, I., Pohl, C., Whittle, J., Zschaler, S. (eds.) Proc. Workshop on Models
for Non-functional Aspects of Component-Based Software. Technical report TUD-
FI04-12-Sept.2004, Dresden University of Technology (2004)

9. Happe, J., Koziolek, H., Reussner, R.: Facilitating performance predictions using
software components. IEEE Software 28(3), 27–33 (2011)

10. Moreno-Delgado, A., Troya, J., Durán, F., Vallecillo, A.: On the Modular Speci-
fication of NFPs: A Case Study. In: XVIII Jornadas de Ingenieŕıa del Software y
Bases de Datos (JISBD). pp. 302–316 (2013), available at http://www.sistedes.

es/ficheros/actas-conferencias/JISBD/2013.pdf.
11. Rivera, J.E., Durán, F., Vallecillo, A.: A graphical approach for modeling time-

dependent behavior of DSLs. In: Proc. of VL/HCC’09. Corvallis, Oregon (US)
(Sep 2009)

12. Röttger, S., Zschaler, S.: Tool support for refinement of non-functional specifica-
tions. Software and Systems Modeling journal (SoSyM) 6(2), 185–204 (Jun 2007)

13. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Object-Technology Series, Addison-Wesley (2002)

14. Spinner, S., Kounev, S., Meier, P.: Stochastic modeling and analysis using QPME:
Queueing petri net modeling environment v2.0. In: Haddad, S., Pomello, L. (eds.)
Proc. 33rd Int’l Conf. Application and Theory of Petri Nets and Concurrency
(Petri Nets 2012). LNCS, vol. 7347, pp. 388–397. Springer-Verlag (2012), http:
//dx.doi.org/10.1007/978-3-642-31131-4_21

15. Troya, J., Rivera, J.E., Vallecillo, A.: Simulating Domain Specific Visual Models by
Observation. In: Proc. of the 2010 Spring Simulation Multiconference. pp. 128:1–8.
SpringSim’10, ACM, New York, NY (2010)

16. Troya, J., Vallecillo, A.: A domain specific visual language for modeling power-
aware reliability in wireless sensor networks. In: Proceedings of the Fourth Interna-
tional Workshop on Nonfunctional System Properties in Domain Specific Modeling
Languages. pp. 3:1–3:6. NFPinDSML ’12, ACM, New York, NY, USA (2012)

17. Troya, J., Vallecillo, A., Durán, F., Zschaler, S.: Model-driven performance analysis
of rule-based domain specific visual models. Information and Software Technology
55(1), 88–110 (2013)


