42 research outputs found

    Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin

    Get PDF
    Abstract Background Skin wound healing includes a system of biological processes, collectively restoring the integrity of the skin after injury. Healing by second intention refers to repair of large and deep wounds where the tissue edges cannot be approximated and substantial scarring is often observed. The objective of this study was to evaluate the effects of mesenchymal stem cells (MSCs) in second intention healing using a surgical wound model in sheep. MSCs are known to contribute to the inflammatory, proliferative, and remodeling phases of the skin regeneration process in rodent models, but data are lacking for large animal models. This study used three different approaches (clinical, histopathological, and molecular analysis) to assess the putative action of allogeneic MSCs at 15 and 42 days after lesion creation. Results At 15 days post-lesion, the wounds treated with MSCs showed a higher degree of wound closure, a higher percentage of re-epithelialization, proliferation, neovascularization and increased contraction in comparison to a control group. At 42 days, the wounds treated with MSCs had more mature and denser cutaneous adnexa compared to the control group. The MSCs-treated group showed an absence of inflammation and expression of CD3+ and CD20+. Moreover, the mRNA expression of hair-keratine (hKER) was observed in the MSCs-treated group 15 days after wound creation and had increased significantly by 42 days post-wound creation. Collagen1 gene (Col1α1) expression was also greater in the MSCs-treated group compared to the control group at both days 15 and 42. Conclusion Peripheral blood-derived MSCs may improve the quality of wound healing both for superficial injuries and deep lesions. MSCs did not induce an inflammatory response and accelerated the appearance of granulation tissue, neovascularization, structural proteins, and skin adnexa

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe

    Tenogenic induction of equine mesenchymal stem cells by means of growth factors and low-level laser technology

    No full text
    Tendons regenerate poorly due to a dense extracellular matrix and low cellularity. Cellular therapies aim to improve tendon repair using mesenchymal stem cells and tenocytes; however, a current limitation is the low proliferative potential of tenocytes in cases of severe trauma. The purpose of this study was to develop a method useful in veterinary medicine to improve the differentiation of Peripheral Blood equine mesenchymal stem cells (PB-MSCs) into tenocytes. PB-MSCs were used to study the effects of the addition of some growth factors (GFs) as TGFβ3 (transforming growth factor), EGF2 (Epidermal growth factor), bFGF2 (Fibroblast growth factor) and IGF-1 (insulin-like growth factor) in presence or without Low Level Laser Technology (LLLT) on the mRNA expression levels of genes important in the tenogenic induction as Early Growth Response Protein-1 (EGR1), Tenascin (TNC) and Decorin (DCN). The singular addition of GFs did not show any influence on the mRNA expression of tenogenic genes whereas the specific combinations that arrested cell proliferation in favour of differentiation were the following: bFGF2 + TGFβ3 and bFGF2 + TGFβ3 + LLLT. Indeed, the supplement of bFGF2 and TGFβ3 significantly upregulated the expression of Early Growth Response Protein-1 and Decorin, while the use of LLLT induced a significant increase of Tenascin C levels. In conclusion, the present study might furnish significant suggestions for developing an efficient approach for tenocyte induction since the external administration of bFGF2 and TGFβ3, along with LLLT, influences the differentiation of PB-MSCs towards the tenogenic fate

    Wound-healing markers after autologous and allogeneic epithelial-like stem cell treatment

    No full text
    Background aims: Several cytokines and growth factors play an essential role in skin regeneration and epithelial-like stem cells (EpSCs) have beneficial effects on wound healing in horses. However, there are no reports available on the expression of these growth factors and cytokines after EpSC therapy. Methods: Wounds of 6 cm2 were induced in the gluteus region of 6 horses and treated with (i) autologous EpSCs, (ii) allogeneic EpSCs, (iii) vehicle treatment or (iv) untreated control. Real time polymerase chain reaction was performed on tissue biopsies taken 1 and 5 weeks after these treatments to evaluate mRNA expression of interferon (IFN)-γ, interleukin (IL)-6, vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insulin-like growth factor (IGF)-1 and epidermal keratin (eKER). Results: One week after treatments, mRNA levels of IL-6 (P = 0.012) and VEGF (P = 0.008) were higher in allogeneic EpSC-treated wounds compared with controls. Also, mRNA levels of IGF-1 were higher at 1 week in both autologous (P = 0.027) and allogeneic (P = 0.035) EpSC-treated wounds. At week 5, all EpSC- and vehicle-treated wounds demonstrated significantly higher IFN-γ, VEGF and eKER mRNA expression compared with controls and compared with their respective levels at week 1. Conclusions: Equine wounds treated with allogeneic EpSCs demonstrate a significant increase in mRNA expression of IL-6, VEGF and IGF-1 in the acute phase. In the longer term, an increase in IFN-γ, VEGF and eKER mRNA was detected in the wounds treated with allogenic EpSCs, autologous EpSCs or their vehicle

    Equine epidermis: A source of epithelial-like stem/progenitor cells with in vitro and in vivo regenerative capacities

    No full text
    Besides the presence of somatic stem cells in hair follicles and dermis, the epidermis also contains a subpopulation of stem cells, reflecting its high regenerative capacity. However, only limited information concerning epidermis-derived epithelial-like stem/progenitor cells (EpSCs) is available to date. Nonetheless, this stem cell type could prove itself useful in skin reconstitution after injury. After harvesting from equine epidermis, the purified cells were characterized as EpSCs by means of positive expression for CD29, CD44, CD49f, CD90, Casein Kinase 2β, p63, and Ki67, low expression for cytokeratin (CK)14 and negative expression for CD105, CK18, Wide CK, and Pan CK. Furthermore, their self-renewal capacity was assessed in adhesion as well as in suspension. Moreover, the isolated cells were differentiated toward keratinocytes and adipocytes. To assess the regenerative capacities of EpSCs, six full-thickness skin wounds were made: three were treated with EpSCs and platelet-rich-plasma (EpSC/PRP-treated), while the remaining three were administered carrier fluid alone (PRP-treated). The dermis of EpSC/PRP-treated wounds was significantly thinner and exhibited more restricted granulation tissue than did the PRP-treated wounds. The EpSC/PRP-treated wounds also exhibited increases in EpSCs, vascularization, elastin content, and follicle-like structures. In addition, combining EpSCs with a PRP treatment enhanced tissue repair after clinical application. © Copyright 2014, Mary Ann Liebert, Inc. 2014

    Equine epidermis: a source of epithelial-like stem/progenitor cells with in vitro and in vivo regenerative capacities.

    No full text
    Besides the presence of somatic stem cells in hair follicles and dermis, the epidermis also contains a subpopulation of stem cells, reflecting its high regenerative capacity. However, only limited information concerning epidermis-derived epithelial-like stem/progenitor cells (EpSCs) is available to date. Nonetheless, this stem cell type could prove itself useful in skin reconstitution after injury. Following harvesting from equine epidermis, the purified cells were characterized as EpSCs by means of positive expression for CD29, CD44, CD49f, CD90, Casein Kinase 2\u3b2, CK14, p63 and Ki67 and negative expression for CD105, cytokeratin (CK)18, Wide CK and Pan CK. Furthermore, their self-renewal capacity was assessed in adhesion as well as in suspension. Moreover, the isolated cells were differentiated towards keratinocytes and adipocytes. To assess the regenerative capacities of EpSCs, 6 full-thickness skin wounds were made, three were treated with EpSCs & platelet-rich-plasma (EpSC/PRP-treated) while the remaining 3 were administered carrier fluid alone (PRP-treated). The dermis of EpSC/PRP-treated wounds was significantly thinner and exhibited more restricted granulation tissue than the PRP-treated wounds. The EpSC/PRP-treated wounds also exhibited increases in EpSCs, vascularization, elastin content and follicle-like structures. In addition, combining EpSCs with a PRP-treatment enhanced tissue repair after clinical application

    Regenerative therapies for equine degenerative joint disease: a preliminary study

    Get PDF
    Degenerative joint disease (DJD) is a major cause of reduced athletic function and retirement in equine performers. For this reason, regenerative therapies for DJD have gained increasing interest. Platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) were isolated from a 6-year-old donor horse. MSCs were either used in their native state or after chondrogenic induction. In an initial study, 20 horses with naturally occurring DJD in the fetlock joint were divided in 4 groups and injected with the following: 1) PRP; 2) MSCs; 3) MSCs and PRP; or 4) chondrogenic induced MSCs and PRP. The horses were then evaluated by means of a clinical scoring system after 6 weeks (T1), 12 weeks (T2), 6 months (T3) and 12 months (T4) post injection. In a second study, 30 horses with the same medical background were randomly assigned to one of the two combination therapies and evaluated at T1. The protein expression profile of native MSCs was found to be negative for major histocompatibility (MHC) II and p63, low in MHC I and positive for Ki67, collagen type II (Col II) and Vimentin. Chondrogenic induction resulted in increased mRNA expression of aggrecan, Col II and cartilage oligomeric matrix protein (COMP) as well as in increased protein expression of p63 and glycosaminoglycan, but in decreased protein expression of Ki67. The combined use of PRP and MSCs significantly improved the functionality and sustainability of damaged joints from 6 weeks until 12 months after treatment, compared to PRP treatment alone. The highest short-term clinical evolution scores were obtained with chondrogenic induced MSCs and PRP. This study reports successful in vitro chondrogenic induction of equine MSCs. In vivo application of (induced) MSCs together with PRP in horses suffering from DJD in the fetlock joint resulted in a significant clinical improvement until 12 months after treatment

    The use of equine chondrogenic‐induced mesenchymal stem cells as a treatment for osteoarthritis: A randomised, double‐blinded, placebo‐controlled proof‐of‐concept study

    No full text
    Background: There is a need to improve therapies for osteoarthritis in horses. Objectives To assess the efficacy of equine allogeneic chondrogenic-induced mesenchymal stem cells combined with equine allogeneic plasma as a novel therapy for osteoarthritis in horses. Study design: Randomised, double-blinded, placebo-controlled experiment. Methods: In 12 healthy horses, osteoarthritis was induced in the metacarpophalangeal joint using an osteochondral fragment-groove model. Five weeks after surgery, horses were randomly assigned to either an intra-articular injection with chondrogenic-induced mesenchymal stem cells + equine allogeneic plasma (= intervention) or with 0.9% saline solution (= control). From surgery until the study end, horses underwent a weekly joint and lameness assessment. Synovial fluid was collected for cytology and biomarker analysis before surgery and at Weeks 5, 5 + 1d, 7, 9 and 11. At Week 11, horses were subjected to euthanasia, and the metacarpophalangeal joints were evaluated macroscopically and histologically. Results: No serious adverse events or suspected adverse drug reactions occurred during the study. A significant improvement in visual and objective lameness was seen with the intervention compared with the control. Synovial fluid displayed a significantly higher viscosity and a significantly lower glycosaminoglycan concentration in the intervention group. Other biomarkers or cytology parameters were not significantly different between the treatment groups. Significantly less wear lines and synovial hyperaemia were present in the intervention group. The amount of cartilage oligomeric matrix protein, collagen type II and glycosaminoglycans were significantly higher in the articular cartilage of the intervention group. Main limitations: This study assessed the short-term effect of the intervention on a limited number of horses, using an osteoarthritis model. This study also included multiple statistical tests, increasing the risk of type 1 error. Conclusions: Equine allogeneic chondrogenic-induced mesenchymal stem cells combined with equine allogeneic plasma may be a promising treatment for osteoarthritis in horses
    corecore