41,022 research outputs found

    Quantum chaos: an introduction via chains of interacting spins-1/2

    Full text link
    We introduce aspects of quantum chaos by analyzing the eigenvalues and the eigenstates of quantum many-body systems. The properties of quantum systems whose classical counterparts are chaotic differ from those whose classical counterparts are not chaotic. The spectrum of the first exhibits repulsion of the energy levels. This is one of the main signatures of quantum chaos. We show how level repulsion develops in one-dimensional systems of interacting spins 1/2 which are devoid of random elements and involve only two-body interactions. In addition to the statistics of the eigenvalues, we analyze how the structure of the eigenstates may indicate chaos. The programs used to obtain the data are available online.Comment: 7 pages, 3 figure

    Cold atoms in non-Abelian gauge potentials: From the Hofstadter "moth" to lattice gauge theory

    Get PDF
    We demonstrate how to create artificial external non-Abelian gauge potentials acting on cold atoms in optical lattices. The method employs nn internal states of atoms and laser assisted state sensitive tunneling. Thus, dynamics are communicated by unitary n×nn\times n-matrices. By experimental control of the tunneling parameters, the system can be made truly non-Abelian. We show that single particle dynamics in the case of intense U(2) vector potentials lead to a generalized Hofstadter butterfly spectrum which shows a complex ``moth''-like structure. We discuss the possibility to employ non-Abelian interferometry (Aharonov-Bohm effect) and address methods to realize matter dynamics in specific classes of lattice gauge fields.Comment: 5 pages, 3 figure

    Mapping case studies of public engagement and participation in science and technology

    Get PDF
    In recent years, increasing criticism has been levelled against case study based research on public engagement and participation in science and technology (PEST). Most critics argue that such case studies are highly contextual and fail to provide global, holistic and systemic views of public engagement phenomena. In this study, we mapped the case study literature on PEST by identifying a robust sample of articles, and analysed it looking for emerging patterns that could provide empirical evidence for new frameworks of public engagement design and analysis. Results show that the case study based literature on PEST continues to grow, although concentrated in a few countries and knowledge domains. The trends that emerged from the sample reveal high centralisation and planning and suggest that deficit science communication models are still common. We argue that future frameworks may focus on decentralising hierarchical power and dependency relationships between agents.info:eu-repo/semantics/publishedVersio

    A Flexible Implementation of a Matrix Laurent Series-Based 16-Point Fast Fourier and Hartley Transforms

    Full text link
    This paper describes a flexible architecture for implementing a new fast computation of the discrete Fourier and Hartley transforms, which is based on a matrix Laurent series. The device calculates the transforms based on a single bit selection operator. The hardware structure and synthesis are presented, which handled a 16-point fast transform in 65 nsec, with a Xilinx SPARTAN 3E device.Comment: 4 pages, 4 figures. IEEE VI Southern Programmable Logic Conference 201

    Reversible quantum teleportation in an optical lattice

    Get PDF
    We propose a protocol, based on entanglement procedures recently suggested by [D. Jaksch et al., Phys. Rev. Lett. 82, 1975 (1999)], which allows the teleportation of an unknown state of a neutral atom in an optical lattice to another atom in another site of the lattice, without any irreversible detection.Comment: 8 pages, 3 figure

    Controlling the dynamics of a coupled atom-cavity system by pure dephasing : basics and potential applications in nanophotonics

    Full text link
    The influence of pure dephasing on the dynamics of the coupling between a two-level atom and a cavity mode is systematically addressed. We have derived an effective atom-cavity coupling rate that is shown to be a key parameter in the physics of the problem, allowing to generalize the known expression for the Purcell factor to the case of broad emitters, and to define strategies to optimize the performances of broad emitters-based single photon sources. Moreover, pure dephasing is shown to be able to restore lasing in presence of detuning, a further demonstration that decoherence can be seen as a fundamental resource in solid-state cavity quantum electrodynamics, offering appealing perspectives in the context of advanced nano-photonic devices.Comment: 10 pages, 7 figure

    Mass-degenerate Higgs bosons at 125 GeV in the Two-Higgs-Doublet Model

    Get PDF
    The analysis of the Higgs boson data by the ATLAS and CMS Collaborations appears to exhibit an excess of h --> gamma\gamma events above the Standard Model (SM) expectations; whereas no significant excess is observed in h --> ZZ* --> {four lepton} events, albeit with large statistical uncertainty due to the small data sample. These results (assuming they persist with further data) could be explained by a pair of nearly mass-degenerate scalars, one of which is a SM-like Higgs boson and the other is a scalar with suppressed couplings to W+W- and ZZ. In the two Higgs doublet model, the observed \gamma\gamma and ZZ* --> {four lepton} data can be reproduced by an approximately degenerate CP-even (h) and CP-odd (A) Higgs boson for values of \sin(\beta-\alpha) near unity and 0.7 < \tan\beta < 1. An enhanced \gamma\gamma signal can also arise in cases where m_h ~ m_H, m_H ~ m_A, or m_h ~ m_H ~ m_A. Since the ZZ* --> {four lepton} signal derives primarily from a SM-like Higgs boson whereas the \gamma\gamma signal receives contributions from two (or more) nearly mass-degenerate states, one would expect a slightly different invariant mass peak in the ZZ* --> {four lepton} and \gamma\gamma channels. The phenomenological consequences of such models can be tested with additional Higgs data that will be collected at the LHC in the near future.Comment: 18 pages, 19 pdf figures, v2: references added, v3&v4: added refs and explanation

    Conservation of Orbital Angular Momentum in Stimulated Down-Conversion

    Get PDF
    We report on an experiment demonstrating the conservation of orbital angular momentum in stimulated down-conversion. The orbital angular momentum is not transferred to the individual beams of the spontaneous down-conversion, but it is conserved when twin photons are taken individually. We observe the conservation law for an individual beam of the down-conversion through cavity-free stimulated emission.Comment: Submitted for publication in Phys. Rev. Let
    corecore