16,270 research outputs found

    Quark masses in QCD: a progress report

    Full text link
    Recent progress on QCD sum rule determinations of the light and heavy quark masses is reported. In the light quark sector a major breakthrough has been made recently in connection with the historical systematic uncertainties due to a lack of experimental information on the pseudoscalar resonance spectral functions. It is now possible to suppress this contribution to the 1% level by using suitable integration kernels in Finite Energy QCD sum rules. This allows to determine the up-, down-, and strange-quark masses with an unprecedented precision of some 8-10%. Further reduction of this uncertainty will be possible with improved accuracy in the strong coupling, now the main source of error. In the heavy quark sector, the availability of experimental data in the vector channel, and the use of suitable multipurpose integration kernels allows to increase the accuracy of the charm- and bottom-quarks masses to the 1% level.Comment: Invited review paper to be published in Modern Physics Letters

    Isobaric-isothermal molecular dynamics computer simulations of the properties of water-1,2-dimethoxyethane model mixtures

    Full text link
    Isothermal-isobaric molecular dynamics simulations have been performed to examine a broad set of properties of the model water-1,2-dimethoxyethane (DME) mixture as a function of composition. The SPC-E and TIP4P-Ew water models and the modified TraPPE model for DME were applied. Our principal focus was to explore the trends of behaviour of the structural properties in terms of the radial distribution functions, coordination numbers and number of hydrogen bonds between molecules of different species, and of conformations of DME molecules. Thermodynamic properties, such as density, molar volume, enthalpy of mixing and heat capacity at constant pressure have been examined. Finally, the self-diffusion coefficients of species and the dielectric constant of the system were calculated and analyzed.Comment: 14 pages, 9 figure

    Corrections to the SU(3)×SU(3){\bf SU(3)\times SU(3)} Gell-Mann-Oakes-Renner relation and chiral couplings L8rL^r_8 and H2rH^r_2

    Get PDF
    Next to leading order corrections to the SU(3)×SU(3)SU(3) \times SU(3) Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is ψ5(0)=(2.8±0.3)×103GeV4\psi_5(0) = (2.8 \pm 0.3) \times 10^{-3} GeV^{4}, leading to the chiral corrections to GMOR: δK=(55±5)\delta_K = (55 \pm 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2)×SU(2)SU(2) \times SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2)×SU(2)SU(2) \times SU(2), δπ\delta_\pi, we are able to determine two low energy constants of chiral perturbation theory, i.e. L8r=(1.0±0.3)×103L^r_8 = (1.0 \pm 0.3) \times 10^{-3}, and H2r=(4.7±0.6)×103H^r_2 = - (4.7 \pm 0.6) \times 10^{-3}, both at the scale of the ρ\rho-meson mass.Comment: Revised version with minor correction

    Chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner relation

    Get PDF
    The next to leading order chiral corrections to the SU(2)×SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, δπ\delta_\pi, the value δπ=(6.2,±1.6)\delta_\pi = (6.2, \pm 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate 2GeV=(267±5MeV)3 \simeq \equiv |_{2\,\mathrm{GeV}} = (- 267 \pm 5 MeV)^3. As a byproduct, the chiral perturbation theory (unphysical) low energy constant H2rH^r_2 is predicted to be H2r(νχ=Mρ)=(5.1±1.8)×103H^r_2 (\nu_\chi = M_\rho) = - (5.1 \pm 1.8)\times 10^{-3}, or H2r(νχ=Mη)=(5.7±2.0)×103H^r_2 (\nu_\chi = M_\eta) = - (5.7 \pm 2.0)\times 10^{-3}.Comment: A comment about the value of the strong coupling has been added at the end of Section 4. No change in results or conslusion

    Comment on current correlators in QCD at finite temperature

    Full text link
    We address some criticisms by Eletsky and Ioffe on the extension of QCD sum rules to finite temperature. We argue that this extension is possible, provided the Operator Product Expansion and QCD-hadron duality remain valid at non-zero temperature. We discuss evidence in support of this from QCD, and from the exactly solvable two- dimensional sigma model O(N) in the large N limit, and the Schwinger model.Comment: 10 pages, LATEX file, UCT-TP-208/94, April 199

    Pion form factor in the Kroll-Lee-Zumino model

    Full text link
    The renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino is used to compute the one-loop vertex corrections to the tree-level, Vector Meson Dominance (VMD) pion form factor. These corrections, together with the known one-loop vacuum polarization contribution, lead to a substantial improvement over VMD. The resulting pion form factor in the space-like region is in excellent agreement with data in the whole range of accessible momentum transfers. The time-like form factor, known to reproduce the Gounaris-Sakurai formula at and near the rho-meson peak, is unaffected by the vertex correction at order O\cal{O}(g_\rpp^2).Comment: Revised version corrects a misprint in Eq.(1

    Renal iron overload in rats with diabetic nephropathy.

    Get PDF
    Diabetic nephropathy (DN) remains incurable and is the main cause of end‐stage renal disease. We approached the pathophysiology of DN with systems biology, and a comprehensive profile of renal transcripts was obtained with RNA‐Seq in ZS (F1 hybrids of Zucker and spontaneously hypertensive heart failure) rats, a model of diabetic nephropathy. We included sham‐operated lean control rats (LS), sham‐operated diabetic (DS), and diabetic rats with induced renal ischemia (DI). Diabetic nephropathy in DI was accelerated by the single episode of renal ischemia. This progressive renal decline was associated with renal iron accumulation, although serum and urinary iron levels were far lower in DI than in LS. Furthermore, obese/diabetic ZS rats have severe dyslipidemia, a condition that has been linked to hepatic iron overload. Hence, we tested and found that the fatty acids oleic acid and palmitate stimulated iron accumulation in renal tubular cells in vitro. Renal mRNAs encoding several key proteins that promote iron accumulation were increased in DI. Moreover, renal mRNAs encoding the antioxidant proteins superoxide dismutase, catalase, and most of the glutathione synthetic system were suppressed, which would magnify the prooxidant effects of renal iron loads. Substantial renal iron loads occur in obese/diabetic rats. We propose that in diabetes, specific renal gene activation is partly responsible for iron accumulation. This state might be further aggravated by lipid‐stimulated iron uptake. We suggest that progressive renal iron overload may further advance renal injury in obese/diabetic ZS rats

    Red Eye: Next Steps for Conducting Research in Knowledge, Attitude and Practice in Ophthalmology

    Get PDF
    Background: Research in Knowledge, Attitude and Practice (KAP) in health sciences is relevant to health care providers and patients to identify factors to address educational interventions.Methods: A pilot study based on surveys amongst participants in a medical update conference in Cali, Colombia, was conducted to estimate participants’ knowledge on red eye in 2011.Results: The population was composed of medical students and general practitioners, with 72.7% of students being in their final year of their training. The classification of red eye was correct in 47% of respondents and we found errors in the classification of emergency, glaucoma and uveitis.Conclusions: Further research proposals in KAP are required for the recognition of this medical education indicator

    Galaxy groups in the 2dF galaxy redshift survey: A Compactness Analysis of Groups

    Full text link
    A comprehensive study on compactness has been carried out on the 2dF Galaxy Group Catalogue constructed by Merch\'an & Zandivarez. The compactness indexes defined in this work take into account different geometrical constraints in order to explore a wide range of possibilities. Our results show that there is no clear distinction between groups with high and low level of compactness when considering particular properties as the radial velocity dispersion, the relative fraction of galaxies per spectral type and luminosity functions of their galaxy members. Studying the trend of the fraction of galaxies per spectral type as a function of the dimensionless crossing time some signs of dynamical evolution are observed. From the comparison with previous works on compactness we realize that special care should be taken into account for some compactness criteria definitions in order to avoid possible biases in the identification.Comment: 11 pages, 14 figures, resubmitted to MNRAS after minor revisio

    Thermal Pions at Finite Isospin Chemical Potential

    Get PDF
    The density corrections, in terms of the isospin chemical potential μI\mu_I, to the mass of the pions are studied in the framework of the SU(2) low energy effective chiral lagrangian. The pion decay constant fπ(T,μI)f_{\pi}(T, \mu_{I}) is also analized. As a function of temperature for μI=0\mu_I =0, the mass remains quite stable, starting to grow for very high values of TT, confirming previous results. However, there are interesting corrections to the mass when both effects (temperature and chemical potential) are simultaneously present. At zero temperature the π±\pi ^{\pm} should condensate when μI=mπ\mu_{I} = \mp m_{\pi}. This is not longer valid anymore at finite TT. The mass of the π0\pi_0 acquires also a non trivial dependence on μI\mu_I due to the finite temperature.Comment: 13 pages, 5 figure
    corecore