4,293 research outputs found

    Accurate <i>ab initio</i> ro-vibronic spectroscopy of the X<sup>2</sup>&#8719; CCN radical using explicitly correlated methods

    Get PDF
    Explicitly correlated CCSD(T)-F12b calculations have been carried out with systematic sequences of correlation consistent basis sets to determine accurate near-equilibrium potential energy surfaces for the X&lt;sup&gt;2&lt;/sup&gt;&#8719; and a&lt;sup&gt;4&lt;/sup&gt;&#931;&lt;sup&gt;−&lt;/sup&gt; electronic states of the CCN radical. After including contributions due to core correlation, scalar relativity, and higher order electron correlation effects, the latter utilizing large-scale multireference configuration interaction calculations, the resulting surfaces were employed in variational calculations of the ro-vibronic spectra. These calculations also included the use of accurate spin-orbit and dipole moment matrix elements. The resulting ro-vibronic transition energies, including the Renner-Teller sub-bands involving the bending mode, agree with the available experimental data to within 3 cm&lt;sup&gt;−1&lt;/sup&gt; in all cases. Full sets of spectroscopic constants are reported using the usual second-order perturbation theory expressions. Integrated absorption intensities are given for a number of selected vibronic band origins. A computational procedure similar to that used in the determination of the potential energy functions was also utilized to predict the formation enthalpy of CCN, &#916;H&lt;sub&gt;f&lt;/sub&gt;(0K) = 161.7 &#177; 0.5 kcal/mol

    Optimized Basis Sets for the Environment in the Domain-Specific Basis Set Approach of the Incremental Scheme

    Get PDF
    Minimal basis sets, denoted DSBSenv, have been developed based on the segmented basis sets of Ahlrichs and co-workers for use as environmental basis set for the domain-specific basis set incremental scheme with the aim of decreasing the CPU requirements of the incremental scheme. The use of this minimal basis within explicitly correlated (F12) methods has been enabled by the optimization of matching auxiliary basis sets for use in density fitting of two-electron integrals and the resolution-of-the-identity. The accuracy of these auxiliary sets has been validated by calculations on a test set containing small- to medium-sized molecules. The errors due to density fitting are about two to four orders of magnitude smaller than the basis set incompleteness error of the DSBSenv orbital basis sets. Additional reductions in computational cost are tested with the reduced DSBSenv basis sets, where the highest angular momentum functions of the DSBSenv auxiliary basis sets have been removed. The optimized and reduced basis sets are used in the framework of the domain-specific basis set of the incremental scheme to decrease the computation time without significant loss of accuracy. The computation times and accuracy of the previously used environmental basis and that optimized in this work is validated with a test set of medium- to large-sized systems. The optimized and reduced DSBSenv basis sets decrease the CPU-time by about 15.4% and 19.4% compared to the old environmental basis and retains the accuracy in the absolute energy with a standard deviation of 0.99 and 1.06 kJ/mol, respectively

    The Phenomenology of a Top Quark Seesaw Model

    Get PDF
    The top quark seesaw mechanism offers a method for constructing a composite Higgs field without the usual difficulties that accompany traditional technicolor or topcolor theories. The focus of this article is to study the phenomenology of the new physics required by this mechanism. After establishing a set of criteria for a plausible top quark seesaw theory, we develop two models, the first of which has a heavy weak singlet fermion with hypercharge 4/3 while the second has, in addition, a heavy weak singlet hypercharge -2/3 fermion. At low energies, these theories contain one or two Higgs doublets respectively. We then derive the low energy effective Higgs potential in detail for the two-doublet theory as well as study the likely experimental signatures for both theories. A strong constraint on the one-doublet model is the measured value of the rho parameter which permits the new heavy fermion to have a mass of about 5-7 TeV, when the Higgs has a mass greater than 300 GeV. In the two-doublet model, mixing of the new heavy Y=-2/3 fermion and the b quark affects the prediction for R_b. In order to agree with the current limits on R_b, the mass of this fermion should be at least 12 TeV. The mass of the heavy Y=4/3 fermion in the two-doublet model is not as sharply constrained by experiments and can be as light as 2.5 TeV.Comment: 33 pages, 12 figures, uses harvmac and picte

    Prescreening and efficiency in the evaluation of integrals over ab initio effective core potentials

    Get PDF
    New, efficient schemes for the prescreening and evaluation of integrals over effective core potentials (ECPs) are presented. The screening is shown to give a rigorous, and close bound, to within on average 10% of the true value. A systematic rescaling procedure is given to reduce this error to approximately 0.1%. This is then used to devise a numerically stable recursive integration routine that avoids expensive quadratures. Tests with CCSD(T) calculations on small silver clusters demonstrate that the new schemes show no loss in accuracy, while reducing both the power and prefactor of the scaling with system size. In particular, speedups of roughly 40 times can be achieved compared to quadrature-based methods

    Cryo-EM Structure of Dodecameric Vps4p and Its 2:1 Complex with Vta1p

    Get PDF
    The type I AAA (ATPase associated with a variety of cellular activities) ATPase Vps4 and its co-factor Vta1p/LIP5 function in membrane remodeling events that accompany cytokinesis, multivesicular body biogenesis, and retrovirus budding, apparently by driving disassembly and recycling of membrane-associated ESCRT (endosomal sorting complex required for transport)-III complexes. Here, we present electron cryomicroscopy reconstructions of dodecameric yeast Vps4p complexes with and without their microtubule interacting and transport (MIT) N-terminal domains and Vta1p co-factors. The ATPase domains of Vps4p form a bowl-like structure composed of stacked hexameric rings. The two rings adopt dramatically different conformations, with the “upper” ring forming an open assembly that defines the sides of the bowl and the lower ring forming a closed assembly that forms the bottom of the bowl. The N-terminal MIT domains of the upper ring localize on the symmetry axis above the cavity of the bowl, and the binding of six extended Vta1p monomers causes additional density to appear both above and below the bowl. The structures suggest models in which Vps4p MIT and Vta1p domains engage ESCRT-III substrates above the bowl and help transfer them into the bowl to be pumped through the center of the dodecameric assembly

    Halogen Bonding with Phosphine: Evidence for Mulliken Inner Complexes and the Importance of Relaxation Energy

    Get PDF
    Intermolecular halogen bonding in complexes of phosphine and dihalogens has been theoretically investigated using explicitly correlated coupled cluster methods and symmetry adapted perturbation theory. The complexes H3P· · · ClF, H3P· · · BrF and H3P· · ·IF are demonstrated to possess unusually strong interactions that are accompanied by an increase in the induction component of the interaction energy and significant elongation of the X–Y halogen distance on complex formation. The combination of these factors is indicative of Mulliken inner complexes and criteria for identifying this classification are further developed. The importance of choosing an electronic structure method that describes both dispersion and longer range interactions is demonstrated, along with the need to account for the change in geometry on complexation formation via relaxation energy and overall stabilisation energies

    Christmas Carols

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1728/thumbnail.jp
    corecore