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Prescreening and efficiency in the evaluation of integrals over ab initio effective core

potentials

Robert A. Shaw1 and J. Grant Hill1, a)

Department of Chemistry, University of Sheffield, Sheffield S3 7HF,

U.K.

(Dated: 31 July 2017)

New, efficient schemes for the prescreening and evaluation of integrals over effective

core potentials (ECPs) are presented. The screening is shown to give a rigorous,

and close bound, to within on average 10% of the true value. A systematic rescaling

procedure is given to reduce this error to approximately 0.1%. This is then used

to devise a numerically stable recursive integration routine that avoids expensive

quadratures. Tests with CCSD(T) calculations on small silver clusters demonstrate

that the new schemes show no loss in accuracy, while reducing both the power and

prefactor of the scaling with system size. In particular, speedups of roughly 40 times

can be achieved compared to quadrature-based methods.

a)Electronic mail: grant.hill@sheffield.ac.uk
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I. INTRODUCTION

Ab initio quantum chemistry methods are nowadays widely used for the accurate study

of the properties and dynamics of molecular systems.1,2 They offer insight into difficult

problems with a level of detail that would often be impossible to obtain experimentally.

However, for the most accurate methods the unfavourable scaling of computational cost with

system size - specifically, the number of electrons and basis functions - prohibits their use

for many interesting cases. Several techniques and approximations3–5 have been introduced

to counteract this, one of the earliest being the observation that only the valence electrons

are of significance in many chemical applications.6–9 In heavy atoms in particular10, the

innermost electrons are largely unperturbed by the surrounding environment. This suggests

that a prudent way to reduce the complexity of the problem is to freeze these electrons,

treating them only in an averaged way. This led to the idea of a pseudopotential11, or

specifically in the case of ab initio methods, an effective core potential (ECP).12 This treats

the potential associated with the core electrons as being fixed, significantly improving the

efficiency of the calculation, and only requiring the additional calculation of integrals over

a one-electron, three-center operator.

In addition to the computational savings, using an ECP allows for a simple way of in-

cluding scalar relativistic effects into what would otherwise be a non-relativistic Schrödinger

equation.13 For heavier atoms, the electrons closest to the nucleus (i.e. the core electrons)

have substantial relativistic character, meaning that neglecting these effects can lead to sig-

nificant errors.14–17 While methods do exist to include such terms in a calculation, it is much

more efficient to include them in the fitting process of the ECP. In this way, the accuracy of

results may even be improved18,19, despite a substantial number of electrons being frozen.

As first proposed by Goddard20 and then improved by Kahn and coworkers21,22, the ECP

is generally fitted to the following form:

U(r) = UL(r) +
L−1
∑

λ=0

λ
∑

µ=−λ

|Sλµ〉Uλ(r) 〈Sλµ| (1)

where the angular momentum, λ, of the radial shells Uλ ranges from zero to L, and Sλµ is a

real spherical harmonic. The Ul(r) are normally expanded in terms of Gaussian functions:

Ul(r) =
∑

k

dklr
nkl exp

(

−ζklr
2
)

(2)
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The coefficients dkl, powers nkl, and exponents ζkl in general depend on the angular momen-

tum of the shell being fitted. This potential is then added as a modification to the usual

core Hamiltonian, which becomes (in atomic units)

H0 = −1

2
∇2 −

∑

iA

[

Zeff
A

RiA

− UA(r)

]

(3)

where i, A denote an electron and nucleus, respectively, Zeff
A is the effective nuclear charge,

which is the usual nuclear charge minus the number of core electrons, and the potential UA

is the ECP on center A, taken to be zero if there is no such ECP. The resulting new integrals

are thus of two different varieties: those involving projections with real spherical harmonics,

termed Type II, and those that do not, termed Type I. Due to the summation in equation

1, there are far more of the former than there are of the latter, and as such it is these that

take up the bulk of the computational effort.

Several different schemes have been devised for the evaluation of these integrals. Of par-

ticular early significance were the methods due to Kahn22 and McMurchie23. The exposition

of the latter will be summarised in the next section. This scheme was improved first by

Skylaris et al.24, then Flores-Moreno and coworkers25, who introduced a half-numerical ap-

proach involving adaptive quadrature over the radial integrals. More recently, Song et al.

have suggested a way to prescreen these integrals while developing their rapid computation

on graphical processing units.26,27 A few attempts have been made to avoid the need for

quadrature, most notably by McMurchie23, Kolar28, and Bode29. These made use of re-

currence relations, but have largely been neglected for a number of reasons. The earliest

such approaches suffered from severe numerical problems25, due to both the limitations of

the machines available at the time, and the particular choices of relations. The most re-

cent was more successful29, but was superseded by the half-numerical scheme as the latter

ran the quadrature over contracted basis functions, as opposed to over all combinations of

primitives.

In the current work, we present both an improved method for prescreening the radial

integrals and a new recursive method for their evaluation. The scheme does not suffer from

numerical issues on modern architectures, and a code generation procedure is presented

that unrolls the recursions, allowing for their extremely efficient evaluation. As such, this

approach is found to be significantly quicker than the half-numerical one, despite being over

primitive functions. In addition, the prescreening scheme is found to lead to speedups when
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applied to either method, and the scaling of both approaches with system size can be seen to

become less steep. These therefore represent an improvement to existing integration routines

that will allow for faster calculations on large systems.

II. ECP INTEGRALS

Here we briefly summarise the expansion of the ECP matrix elements in terms of angular

and radial integrals, as described in more detail in other sources23,25. As noted above, taking

the matrix element over equation 1 results in two types of integral. The first of these (Type

I), not involving projections, requires minimal effort and thus will not be considered here.

We consider matrix elements of the Type II integrals over Gaussian-type basis functions.

The function φa, with angular momentum a and located at A, is defined in the usual way

as

φa(r) = xax
A y

ay
A zazA

∑

i

diae
−ζiar

2
A (4)

where αA = rα− Aα for α = x, y, z, rA = |r−A|, and dia, ζia are the primitive coefficients

and exponents, respectively. The matrix element, χλµ
ab , is given by

χλµ
ab = 〈φa| (|Sλµ〉Uλ(r) 〈Sλµ|) |φb〉

=

∫

∞

0

dr r2Uλ(r)

∫

Ω

dΩ φa(r)Sλµ

∫

Ω′

dΩ′ φb(r
′)Sλµ

(5)

This involves two integrals over solid angles, Ω and Ω′, of the same form:

T λµ
a =

∫

Ω

dΩ φa(r)Sλµ (6)

We introduce equation 4 into this and use the binomial expansion for the powers of αA.

Remembering a = ax + ay + az, and defining aklm = k + l +m, this therefore becomes

T λµ
a =

∑

i

dia

ax
∑

k=0

ay
∑

l=0

az
∑

m=0

(−1)aCx,A
k Cy,A

l Cz,A
m e−ζiaA

2

× raklme−ζiar
2

∫

Ω

dΩ xkylzme2ζiaA·rSλµ

(7)

where the coefficients Cα,A
i are defined as

Cα,A
i = (−1)i

(

aα
i

)

Aaα−i
α (8)
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The exponential of the dot product in the remaining integral in equation 7 can be expanded

in terms of real spherical harmonics and modified spherical Bessel functions of the first

kind30, Mλ, to give

∫

Ω

dΩ xkylzme2ζiaA·rSλµ

= 4π
∞
∑

ρ=0

Mρ(2ζiaAr)

ρ
∑

σ=−ρ

SA
ρσΩ

klm
ρσ,λµ

(9)

Here, we have used the notation SA
ρσ = Sρσ(θA, φA), and defined the angular integral

Ωklm
ρσ,λµ =

∫

Ω

dΩ xkylzmSρσSλµ (10)

which can easily be evaluated analytically. In particular, it is necessarily only non-zero for

|ρ−k−l−m| ≤ λ ≤ ρ+k+l+m, and k+l+m+ρ−λ even. The former restricts the otherwise

infinite summation in equation 9, while the latter allows for the more efficient generation of

the total integrals, as many radial integrals can be neglected. Note also that this angular

integral does not depend at all on the particular exponents or contraction coefficients of the

basis functions, and thus can be tabulated in advance.

Using the shorthand DA
klm = Cx,A

k Cy,A
l Cz,A

m , the Type II integral, equation 5, can therefore

be written as

χλµ
ab =16π2

∑

klm

DA
klm

∑

pqr

DB
pqr

×
∑

ρσκτ

SA
ρσS

B
κτΩ

klm
ρσ,λµΩ

pqr
κτ,λµT

2+aklm+bpqr+nkλ

ρκλ

(11)

We have defined the contracted radial integral as

T N
ρκλ =

∑

ijk

diadjbdkλ exp(−ζiaA
2 − ζjbB

2)QN
ρκλ (12)

which in turn is in terms of the primitive radial integral

QN
ρκλ =

∫

∞

0

dr rNe−pijkr
2

Mρ(2ζiaAr)Mκ(2ζjbBr) (13)

where pijk = ζia + ζjb + ζkλ.

Equation 13 has been found not to be very stable with respect to quadrature schemes25,

so usually an enveloped Bessel function is defined as Kn(z) = e−zMn(z), and the exponential
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in equation 12 is absorbed into the integrand. This then gives

RN
ρκλ =

∫

∞

0

dr rNe−ζkλr
2

Kρ(2ζiaAr)Kκ(2ζjbBr)

× exp
(

−ζia(r − A)2 − ζjb(r − B)2
)

(14)

Flores-Moreno et al.25 went further and noted that one could directly evaluate the contracted

integral by quadrature by defining

Ka
ρ(r) =

∑

i

diaKρ(2ζiaAr) (15)

and not expanding the ECP, such that equation 12 becomes

T N
ρκλ =

∫

∞

0

dr rNUλ(r)Ka
ρ(r)Kb

κ(r)

× exp
(

−ζia(r − A)2 − ζjb(r − B)2
)

(16)

Clearly, this reduces the number of individual quadratures that need to be carried out. It

does not, however, reduce the number of expensive evaluations of the Bessel functions, and

it also suffers significant numerical instabilities for certain arguments of the Bessel functions,

as will be discussed later. In these cases where equation 16 does not converge sufficiently

well, the procedure must default back to the evaluation over primitives, generally using a

much tighter integration grid. Thus, even within this scheme, it is desirable to be able to

efficiently screen these integrals, so that lengthy quadratures can be avoided, and to have a

more efficient method for the integration over primitives.

III. PRESCREENING THE RADIAL INTEGRALS

Song et al. have recently suggested a method for screening the total Type II integral in

equation 11.26 They demonstrated that a substantial number of integrals can be neglected in

this way. By consideration of the radial integral specifically, however, we can achieve a much

closer bound. Clearly, screening the entire integral should be somewhat more efficient, but

the radial integration is by far the most expensive part of the calculation, such that there is

no real difference in efficiency. Moreover, achieving a tighter bound not only compensates

for this, but is also crucial in the integration scheme that follows, as will be discussed later.

We begin by considering the integrand, f(r; a, b,N), of equation 14 in the following,
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notationally simplified form:

f(r; ρ, κ,N) = rNKρ(kAr)Kκ(kBr)

× exp
[

−ηr2 − α(r − A)2 − β(r − B)2
]

(17)

where kA = 2αA, kB = 2βB, with α, β, and η replacing ζia, ζjb, and ζkλ respectively. It

is shown rigorously in the supplementary material that this distribution is unimodal, and

that, using the following recurrence relations30:

Mn−1(z)−Mn+1(z) =
2n+ 1

z
Mn(z) (18)

nMn−1(z) + (n+ 1)Mn+1(z) = (2n+ 1)M ′

n(z) (19)

it is possible to determine this mode using the transcendental equation given in equation

20.

2pr20 =N − ρ− κ− 2

+

[

kA + kB +
Mρ−1(kAr0)

Mρ(kAr0)
+

Mκ−1(kBr0)

Mκ(kBr0)

]

r0
(20)

We denote this mode as P .

At this point, it simplifies matters to rescale the distribution by this maximum and

consider g(r) = f(r)/f(P ). This is given by

g(r) =
( r

P

)N Kρ(kAr)

Kρ(kAP )

Kκ(kBr)

Kκ(kBP )

× exp
[

−p(r − P )2 − (2pP + kA + kB)r + (kA + kB)P
]

(21)

If we consider a point r in the neighbourhood of the maximum, P , such that x = r/P ≈ 1,

the Bessel function ratios above are less than or equal to unity, giving the inequality

g(r) ≤ u(x) exp
[

−p(r − P )2
]

(22)

where

u(x) = xN exp {P [−(2pP + kA + kB)x+ kA + kB]}

≈ exp
[

−2pP 2
]

(23)

That is, in the vicinity of the maximum we have u(x) < 1 (as P 6= 0), such that g(r) <

exp[−p(r − P )2]. By the analysis earlier, g is asymptotically dominated by the same Gaus-

sian, and the monotonicity of each thus entails that g(r) ≤ exp[−p(r − P )2] on the whole
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domain (note that equality occurs at the maximum, hence the weak inequality). That is,

we can write that f(r) ≤ f(P ) exp[−p(r − P )2], such that the primitive radial integral is

bounded by

RN
ρκλ ≤ f(P ; ρ, κ,N)

∫

∞

0

dr exp[−p(r − P )2]

=
1

2
f(P ; ρ, κ,N)

√

π

p
{1 + erf(

√
pP )}

(24)

Assuming that the position of the maximum is known, this can be rapidly evaluated,

either using one of the many efficient implementations of the error function, or simply using

the fact that the error function is strictly increasing, such that an adequate bound can be

achieved through a pretabulated point close to, but greater than,
√
pP . The evaluation of

f(P ) requires two Bessel function values, as compared with the 512 needed on a typical

small quadrature grid (or typically 2048 in the case where the smaller quadrature fails).

Unfortunately, the transcendental nature of equation 20 means that the maximum cannot

be found in closed form. However, that equation as written is a stable iterative fixed point

equation, and given a close guess to P will typically converge to a sufficiently accurate value

within two to three iterations, as will be demonstrated later. As each iteration requires only

four additional evaluations of Bessel functions, this is still an insubstantial cost compared

to the full quadrature.

Example integrands and their approximants are shown in Figure 1, where it can be

seen how closely they match. In fact, from the figure it appears that simply decreasing

the width of the Gaussian could result in even better agreement with the true integral. If

we consider the kernel of the right hand side of equation 24 to be a function, R̃, of some

width-controlling exponent γ, we can investigate how the error behaves as a function of this

width. For simplicity we rescale the system without loss of generality, such that P = 1 and

f(P ) = 1. Therefore, the approximate integral as a function of γ is:

R̃(γ) =
1

2

√

π

γ
{1 + erf(

√
γ)} (25)

The monotonicity of R and R̃ then implies there is precisely one value of γ such that R̃ = R.

This suggests that an ad hoc scaling of the width, or of the integral itself, could yield very

good approximations to the integrals with essentially no additional effort.
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FIG. 1. Example integrands, f(r) (solid black lines), and their Gaussian approximants (dashed red

lines). The randomly selected parameters (N, ρ, κ, p, A,B) are (2, 0, 0, 3, 0.2, 2.9) on the left, and

(4, 0, 2, 11.8, 1.3, 3.7) on the right. The matching of the maxima results in a close fit, and the right

hand case demonstrates the general trend towards exact agreement as the parameters kA and kB

become larger.

IV. INTEGRATION SCHEME

As has been noted previously23,28,29, there are a number of possible recurrences on the

Bessel functions that can be used to try and evaluate the primitive radial integrals. However,

for this approach to be feasible, care has to be taken in choosing not only which relations

to use, but also the order to use them in, as this will have a significant impact on the

numerical stability of the algorithm. In addition, precise consideration must be given to the

cancellation of terms, both to avoid increasingly large alternating series and to ensure that

evaluation is as efficient as possible.

Firstly, we revert to equation 13, but written in the following simplified notation, for

reasons of clarity:

Qijk =

∫

∞

0

dr rke−pr2Mi(2αAr)Mj(2βBr) (26)

where as always p = η + α+ β is the sum of exponents. The symmetry of the integral with

respect to interchange of a and b (and therefore i and j) means that we can, without loss of

generality, assume that j ≥ i. In addition, we note that k ≥ 2 must always be true. Then,

we reduce the first index, i, to zero by combining equations 18 and 19, this time so as to

eliminate Mn−1:

Mn+1(z) = M ′

n(z)−
n

z
Mn(z) (27)
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Note that division (multiplication) by r corresponds to decreasing (increasing) the index k

by one. Using this, the fact that the integrand necessarily goes to zero at the integration

limits, and the result earlier for the derivative of the j-indexed Bessel function, integration

by parts then gives the following relation for Qijk:

Qijk = µijkQi−1,j,k−1 + νQi−1,j−1,k + ξQi−1,j,k+1 (28)

where µijk = (2+ j− i− k)/(2αA), ν = −βB/(αA), and ξ = p/(αA). Applying this i times

will reduce the first index to zero, leaving the second and third indices in the ranges [j− i, j]

and [k − i, k + i], respectively. In this way, we avoid either increasing the second index, or

reducing it below zero, as we have assumed j ≥ i.

At this point, we can apply equation 18 directly on j to get the following:

Q0jk = σQ0,j−2,k + ρjQ0,j−1,k−1 (29)

where ρj = −(2j−1)/(2βB), and σ = 1. This is included here only to simplify the process of

expanding the recurrences later. This recurrence on its own is known to be quite numerically

unstable when used repeatedly25, due to the formation of an alternating series of differences,

while equation 28 is more robust. Therefore, while it may seem attractive to use the former

for both the i and j indices, as it will reduce said indices independently, putting the majority

of the effort into the latter alleviates some potential problems. The above can be used to

reduce j to either zero or unity, depending on its parity, yielding values of k from k − j to

k. When coupled with the earlier ranges, this implies we have integrals of the form Q00N

and Q01N with N taking integer values in the range [k− i− j, k+ i]. Integrals of these form

are simple to evaluate analytically, using the fact that the functional forms of the first two

modified spherical Bessel functions of the first kind are given by M0(z) = sinh(z)/z and

M1(z) = [z cosh(z)− sinh(z)]/z2.31

We define the following base integrals:

FN =

∫

∞

0

dr rN−2e−pr2 sinh(kAr) sinh(kBr) (30)

GB
N =

∫

∞

0

dr rN−2e−pr2 sinh(kAr) cosh(kBr) (31)

HN =

∫

∞

0

dr rN−2e−pr2 cosh(kAr) cosh(kBr) (32)

where GA
N is equivalently defined to GB

N , but with the kAr = 2αAr and kBr = 2βBr

arguments exchanged. From this and the definitions of the Bessel functions, we clearly have
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that Q00N ≡ FN/(kAkB), and

Q01N =
1

kAkB

[

υGB
N + ωFN−1

]

(33)

where ω = −1/kB and υ = 1. Thus all integrals can be written in terms of the above base

integrals. The lowest N , k − i− j, will always be of F -type, and the required integrals will

alternate between F and G, up to N = k + i.

The solutions to these integrals are as follows, where we assume that N is even for FN

and HN , and odd for GN :

I±2n =
1

4

n−1
∑

m=0

(

2n− 2

2m

)

p−nmΓ(nm)X
±

2m (34)

GB
2n+1 =

1

4

n−1
∑

m=0

(

2n− 1

2m+ 1

)

p−nmΓ(nm)X
−

2m+1 (35)

X±

N = PN
+ epP

2
+ ± PN

−
epP

2
− (36)

where we have defined P± = (βB ± αA)/p, FN = I−N , HN = I+N , nm = n−m− 1/2, and Γ

is the gamma function.We note that these are all very similar in form, and the terms in the

sums can be computed incrementally. Moreover, the gamma function values are all integer

multiples of a half, and thus high-accuracy values can be hardcoded. This means that all

of the necessary base integrals can be very rapidly computed in batches. The derivations

for these are given in the supplementary material, along with the solutions for the other

parity. The latter are more complicated, yielding incomplete gamma functions that, while

not particularly difficult to compute, would not be able to be pretabulated. However, as was

noted earlier, the angular parts of the integral in equation 11 are only nonzero for (using

the current notation) k+ n+ i+ j − 2λ even, where n is the power of r associated with the

ECP. This is of course equivalent to requiring that k + n− i− j be even, which so long as

n is even, will result in only even N for the F -type integrals, and odd N for the G-type. It

happens to be the case that for the vast majority of ECPs, n is even; in fact, it is usually

zero. Note that the factor of two from the spherical volume element is often included in the

power, so that the basis may appear to have a power of two - we are explicitly including it

here.

However, the above formulas only apply for N ≥ 2, as the binomial expansion used is

in general not valid over the whole domain of the integral for negative powers. A number
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of integrals do involve k − i − j < 0, and so we must find further recurrences to determine

these. This can easily be done using integration by parts on the power of r, yielding:

FN =
2p

N − 1
FN+2 −

kA
N − 1

GA
N+1 −

kB
N − 1

GB
N+1 (37)

G
A/B
N =

2p

N − 1
G

A/B
N+2 −

kB/A

N − 1
HN+1 −

kA/B

N − 1
FN+1 (38)

HN =
2p

N − 1
HN+2 −

kB
N − 1

GA
N+1 −

kA
N − 1

GB
N+1 (39)

The only remaining problem is the case where N = 1, when the above clearly cannot

work. Under the assumption that odd N only occurs for the G-type integrals, we only need

explicitly derive G1, which is as follows:

GB
1 =

1

2

√
π
{

epP
2
+D(

√
pP+)− epP

2
−D(

√
pP−)

}

(40)

where D(z) is the Dawson function30, closely related to the error function. This adds a small

amount of complication, but highly accurate and efficient implementations of the Dawson

function are readily available, and only up to four such evaluations are needed (GA
1 and GB

1 ).

The derivation of the above is given in the supplementary material, along with both F1 and

H1 for completeness. It should be pointed out that, in the case where one of the positions

is zero (i.e. kA or kB are zero), the above scheme needs to be modified slightly; the details

of these special cases are also given in the supplementary material.

A. Unrolling the recurrence relations

The ability to write integrals involving arbitrary angular momenta in terms of simple

functions is useful, but not in itself a guarantee of efficiency. From a programmatic stand-

point, recursion is in general much slower than iteration; on top of this, repeatedly taking

differences of similarly sized quantities can easily cause problems unless extremely high-

precision arithmetic is employed. The solution to both of these issues is to explicitly expand

the terms in the recursions such that any given integral can be written as

Qijk =
k+i
∑

m=k−i−j

{cm,FFm + cm,GGm + cm,HHm} (41)

where the coefficients, cm,X are to be determined. This then requires a minimum of evalua-

tions, allowing for extensive optimisation, and if the form of the coefficients can be simplified,

the number of arithemetic operations can be minimised.
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〈123〉 〈125〉
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ν

ξ

µ125 µ127

µ116

σ

ν

ξ
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ω

FIG. 2. A subgraph of the infinite three-dimensional network defined by the recursion relations,

as described in the text. The directed edges are indicated with arrowed, dotted lines, with the

vertices (integrals) shown by solid black circles labelled with their indices, 〈ijk〉. Base integrals are

shown by the grey vertices. The solid edges demonstrate the five distinct paths from 〈226〉 to F4;

for clarity, only these edges are labelled with their weights (coefficients).

In order to generate the correct coefficients, it is necessary to enumerate all possible

routes from the starting indices, ijk, to the base integral, Xm. This is a combinatorial

problem equivalent to finding all distinct connecting paths on a digraph with edges defined

by the recursive ‘rules’ set out above. That is, the index i is reduced first using relation 28,

followed by j using equation 29, before finally utilising equation 33. One could include then

expanding the negative-indexed base integrals at this point, or could treat those separately

and assume that all indices of base integral are available. It is somewhat simpler to take the

latter approach, and this is shown for a subgraph in Figure 2.

The class of edge can be denoted by the constant - µ, ν, or ξ (for the first index), and

ρ, σ, υ, or ω (for the second index) - associated with a given term, weighted by its index

changes, (∆i,∆j,∆k). These changes are (−1, 0,−1), (−1,−1, 0), (−1, 0,+1), (0,−1,−1),

(0,−2, 0), (0,−1, 0), and (0,−1,−1), respectively, as can be seen by inspection of either the

recurrence relations or the network in Figure 2. The path through the graph can thus be

written as a list of edges traversed; for example, [µµνρω]. Given the starting vertex, 〈ijk〉,
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TABLE I. Enumeration of all paths, and the resulting coefficients for the base integrals, for the

integral Q125.

XN Paths cm,X

F2 [µρω] −6/(kAk
2
B)

GB
3 [µρυ] 6/(kAkB)

F4 [µσ], [νω], [ξρω] (6p− k2B)/(kAk
2
B)

GB
5 [νυ], [ξρυ] −(k2B + 6p)/(kAkB)

F6 [ξσ] 2p/kA

the resultant vertex, 〈IJK〉, is then given by the sum of weights, e.g., the above path would

give 〈i− 3, j − 3, k − 4〉. The valid paths for a particular integral are therefore the ones

where I = J = 0, which translates to paths where the sum of orders of the first- and second-

index edges are precisely i and j, respectively, with the first-index edges always traversed

first. The order of an edge with respect to an index is the magnitude of its reduction in that

index, e.g., µ-edges have order one in i, while σ-edges have order two in j. Only the ν-edges

have a mixed order, which is one in both i and j. This almost completely determines the

paths that need be considered, and is equivalent to generating all symbolic permutations

within a class. This is an example of a combinatorial search, for which many efficient

algorithms already exist.32 There is an additional constraint, which somewhat simplifies the

search: that υ and ω can only ever be the final edge, as these always end at a ‘base’ vertex,

and ρ may never be the final edge, as then the accompanying σ term would have j < 0.

To give a concrete example, consider the starting vertex 〈125〉. We need to reach the set

of vertices 〈00N〉 with N ranging from two to six. Only one possible path will give N = 2,

as every edge must decrease the k-index, and this is [µρω], corresponding to the constants

µ125ρω. Similarly, the only path to give N = 6 is [ξσ]. All of the paths and the resultant

coefficients are given in Table I. The more complex case of 〈226〉 is shown schematically in the

graph in Figure 2.Together, these demonstrate the reduction in complexity. The traversal

of the graph and subsequent simplification of the algebraic terms can all be automated,

resulting in integrals that involve a minimal number of summations of predefined quantities,

allowing for optimised code to be generated.
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B. Dealing with small exponents

The two main problems previously associated with recursive schemes for ECP integrals

are a lack of efficiency, which has been dealt with above, and numerical issues concerning cer-

tain arguments of the Bessel functions. The latter problem is in fact inherent in all currently

used methods, however; the method of Taylor expansion of the integral switches to using nu-

merical quadrature when convergence of the expansion fails, while the half-numerical scheme

defaults to a much larger grid and a different transformation of the integral limits when the

desired accuracy is not achieved. In all cases, the problem is due to either very small or very

large arguments of the Bessel functions, whereby the integrals themselves become small but

non-vanishing. In particular, quadrature using the standard logarithmic transformation33,34

struggles with large arguments, whence the width of the integrand becomes very small, while

the Taylor series fails for very small arguments, where the integrand is at its most skewed.

For the recurrence relations, it is also the latter instance that causes the most problems,

as all terms involve some form of 1/kA or 1/kB. Given that in any reasonable chemical

system, A and B are likely to be roughly larger than one (Bohr), this translates to the case

of very small exponents, where the definition of ‘very small’ is dependent on the arithmetic

precision being employed.

The solution to this issue is to be found in the prescreening outlined earlier. Equation 24

is robust and accurate enough that, for sufficiently small values of the integral, it can give

the correct result to within a reasonable desired precision. In the case of large kA and kB, it

is simple to demonstrate that the integrand tends to a Gaussian, such that the prescreening

becomes essentially exact. This is shown in the right-hand plot of Figure 1. For α or β

tending to zero, the Bessel functions vanish unless they are M0(z), where they tend to unity.

When coupled with the exponential decay, this means the value of the integral also becomes

small, with the exception of the case where both Bessel functions are M0(z). However, this

instance does not necessitate recursion, as the result can be written directly in terms of a

single base integral. Given a tolerance of ǫ, if the prescreened value ι < ǫ we skip the integral.

If ι is accurate to within δ%, then we can take it to be the true value for ι < 100ǫ/δ. For

usual values of ǫ ∼ 10−12, this should eliminate numerical problems for δ in the range 0.1 to

1. If stricter tolerance is required, the only options are to use high-precision arithmetic, for

example by avoiding floating point representations, or to default to quadrature with a large
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grid and a restricted integration interval.

As given, the prescreening value usually achieves precision within 1 to 35 percent. How-

ever, this can be greatly increased by either rescaling the value, or rescaling the exponent.

The fitted Gaussian has two degrees of freedom - the center and the exponent - one of

which is fixed by requiring that the value at the mode agrees exactly with that of the true

distribution. We are then free to fit the exponent to any other point. As shown in Figure

1, the width of the distribution is overestimated most severely on the left hand side, which

suggests fitting to a point P −∆, for some small ∆ > 0. The exponent to use in equation

25 can then be determined as

γ = − 1

∆2
ln

(

f(P −∆)

f(P )

)

(42)

Note that as f(z) ≤ f(P ) for all z, this will always give a positive exponent, as should be

expected. In addition, taking the fitted point to the left of center will underestimate the

width, unless very small ∆ is used, while equivalently, taking the fitted point to the right of

center will overestimate the width. This suggests one approach would be to take multiple

such points on each side, and average the integrals in some way; this could then potentially

be used to evaluate all integrals to within the desired precision.

Alternatively, we can observe the percentage deviation as a function of the exponent em-

pirically, as shown in Figure 3 for β (symmetry of the integrand implies the same must apply

for α). This seems to suggest the percentage deviation follows something approximating a

Normal distribution, so that we can rescale the integral (once for each of α and β) as:

ι̃ =
ι

1 + Y exp(−o[(log10 α−O)2 + (log10 β −O)2])
(43)

where Y , o and O are the empirically determined amplitude, standard deviation, and mean

of the error distribution above. A least-squares fitting designed to favour the most needed

region (around 10−6 to 10−2) gives these to be Y = 34.5, o = 0.024, and O = −3.1, the

result of which is also shown in Figure 3.

V. RESULTS

In order to test the integration scheme, code was generated as described above capable

of handling up to f -type basis functions, both in the orbital and ECP bases. This was then
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FIG. 3. The percentage deviation of the prescreening value of the integral from that calculated

using the large quadrature grid, as a function of the exponent β. All other parameters were fixed

to be 1.0. The solid black line is the value from equation 24, whilst the dashed red line is the

rescaled value from equation 43. The results are from 10,000 randomly generated exponents, β,

with the deviation taken as the average over all 50 Qijk.

manually checked and further optimised. For comparison, an adaptive Gauss-Chebyshev

quadrature was implemented35,36, utilising in the first instance a 256-point grid and the

logarithmic transformation of Treutler and Ahlrichs33,34, but defaulting to a 1024-point

quadrature over primitives with a linear transformation when the former fails to converge.

Both used a tolerance of 10−12. This is as described in Ref. 25. The same prescreening

routine was then applied to both of these, with the option of having no rescaling, integral

rescaling with parameters as listed above, or exponent rescaling. In the latter case, a value

of ∆ = 0.34/
√
p was found to give the best results. Both approaches yield broadly similar

precision, but in general the integral rescaling is more efficient as it does not require any

further Bessel function evaluations. Therefore, this was chosen to be the default method

in the recursive scheme. The code was implemented both as a standalone program, and as

part of an in-house quantum chemistry code. For the benchmarking tests, a pseudo-random

number generator was used to select parameters η, α, β, A, and B, before calculating Qijk

for all relevant combinations of i, j, and k in the range zero to five. The exponents were

chosen to be 10n with n drawn from a Normal distribution with mean zero and standard

deviation two, while A and B were drawn from uniform distributions on [0.1, 10]. The true
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value of the integral was taken to be that from the aforementioned 1024-point quadrature,

but with a tolerance of 10−14.

For the tests on silver clusters, restricted Hartree-Fock (HF) and coupled cluster with sin-

gles and doubles excitations and perturbative triples, CCSD(T), calculations were performed

with both cc-pVDZ-PP (VDZ-PP herein) and aug-cc-pVDZ-PP (aVDZ-PP) correlation con-

sistent basis sets on the silver atoms37, which use the ECP28MDF effective core potential38.

Pure spherical harmonic functions were used throughout. Benchmark values were calcu-

lated using the molpro 2015.1 suite of programs39, to compare with the results from the

in-house code. The lowest energy geometries for the Agn clusters were taken from the work

of Duanmu and Truhlar40, optimised using CCSD(T) for n = 2 to 4 and the N12 density

functional for n = 5, 641; the basis set used was aug-cc-pVQZ-PP37. All timings in this and

the above were performed on a single processor.

A. Benchmarking and stability tests

The efficiency of the prescreening (without any rescaling) is demonstrated in Figure 4.

This shows both how the prescreened value remains strictly greater than or equal to the true

value, and the closeness of their agreement, as the plot is very near linear for the majority

of values. Of the five million integrals, approximately 19% were below the chosen tolerance

of 10−12. While the bound appears to be less close in this regime, the important point is

that the subsequent integrations are correctly avoided. Moreover, below the tolerance of the

large quadrature (10−14) the differences may be due to the limited precision. The validity of

the prescreening did not significantly change upon changing the ijk indices of the integral,

which is most likely due to the explicit determination of the value at the maximum. The

starting guess for the mode was taken to be P+ as defined earlier; using this, the iterations

of equation 20 converged to within 0.01 in 2.24 cycles on average. In general, the fixed

point equation converged in at most 3 iterations, regardless of the particular parameters

or indices of the integral, demonstrating the robustness of the procedure. The cost can

be further reduced by loosening the convergence criterion, with a choice of 0.1 performing

similarly well and requiring only 1.9 cycles on average. However, this did very occasionally

result in loss of the strictness of the bound.

To study the numerical stability of the new scheme, it suffices to look at how the absolute
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FIG. 4. A log-log plot of the integral value as determined by the prescreening procedure compared

to that from the 1024-point quadrature, where the density indicates the number of integrals. Shown

are the results from 100,000 randomly generated sets of parameters, evaluated for 50 different

Qijk, ranging from Q002 to Q554, restricted to even i+ j + k. The black line indicates the desired

prescreening threshold of 10−12.

error in the integral (as compared to that from the large quadrature) varies with exponent.

As has already been noted, the parameters A and B are constrained by the nature of the

system, while symmetry means that considering α or β is equivalent. Therefore, we just

allow β to vary, fixing all other parameters to unity. The results are shown in Figure 5.

For the majority of exponents, all three schemes shown are well below the desired tolerance

of 10−12. We note that any differences between them below 10−14 again cannot be taken

to be meaningful, as this was the cutoff for convergence of the reference value. The most

notable feature is how the recursive- and quadrature-based integrations show reversed trends

in stability. This agrees with the expectation outlined earlier: the latter struggles with large

values of the exponent, where the distribution tends towards vanishing width, while the

former has problems with very small exponents. Upon applying the scaled prescreening,

however, it can be seen that the error is brought safely below the threshold. This is then

the only method that gives stability across the entire range. It should be noted that in real

basis sets the exponents are most likely to be found in the range [10−5, 105], such that the

instabilities in the quadrature will be uncommon. For very large values of both α and β,

though, failures in convergence are observed, which is why the procedure has the option
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FIG. 5. A log-log plot of the absolute error in the integral (compared to that from the large-

grid quadrature) for the recursive integration (with and without prescreening) and the 256-point

quadrature. The values are from 10,000 randomly generated exponents, averaged over all 50 Qijk.

to switch to a larger quadrature over primitives. The figure shows errors averaged over all

integrals for a given set of parameters, and thus does not show how stability depends on

the integral indices. In general, the larger the value of i + j + k, the larger the error in all

schemes, but particularly in the recursion, as is to be expected. However, the differences

in error between Q002 and Q554 are roughly one order of magnitude (10−14 as compared

to 10−13), such that the overall deviation remains below 10−12 for the screened recursion

scheme.

Finally, Figure 6 shows the speedups that can be achieved by using the prescreening,

and by using the new integration scheme. When applied to the quadrature, prescreening

results in modest savings of on average a factor of 1.5. The code-generated recursive method,

however, offers savings of approximately two orders of magnitude. These timings are taken

by cumulatively summing over the time taken for the five million integrals. In general, the

higher the angular momenta, the less efficient the recursions are. However, the unrolling

means that while Q554 takes on average three times as long as Q002, it is still orders of

magnitude faster than the quadrature.
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FIG. 6. The cumulative time taken to calculate a given number of integrals, for the large, small,

and prescreened small quadratures, and the recursive scheme with scaled prescreening. As can be

seen, the new methods are significantly more efficient. The accumulation is taken over the 100,000

randomly generated parameter sets, each used to calculate 50 Qijk, with ijk ranging from 002 to

554.

B. Tests on silver clusters

CCSD(T) single-point calculations on closed-shell silver clusters with up to six silver

atoms were performed using both the VDZ-PP and aVDZ-PP basis sets. The results for the

former, compared to calculations performed in molpro, are shown in table II. As can be

seen, in all instances the energy calculated using either integration scheme is identical to the

molpro value to within the threshold (10−7Eh) chosen for convergence of the energy. This

demonstrates that neither the prescreening nor the recursion are resulting in any numerical

issues overall. The results in the aVDZ-PP basis are very similar, and are given in the

supplementary material. Moreover, it can be seen that there are significant time savings

associated with the recursive scheme compared to the prescreened quadrature. The former

is on average 32 (VDZ-PP) or 38 (aVDZ-PP) times faster than its counterpart. In fact, the

speedups are such that the silver hexamer takes roughly the same amount of time in the new

scheme as the dimer does using quadrature. This is despite the number of basis functions

tripling.

This can be seen most clearly in Figure 7, where the scaling of the integration with the

number of ECP centers is shown. We note that, as all atoms are the same, the number of
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TABLE II. CCSD(T)/VDZ-PP energies for small, closed-shell silver clusters, with absolute errors,

∆/Eh,
a for energies calculated using the screened recursion and quadrature schemes for the ECP

integrals. In addition, total ECP integration times relative to Ag2 in the recursive scheme (0.05

seconds) are shown.

Cluster Energy ∆recur. ∆quad. trecur. tquad.

Ag2 −292.72567 0 0 1.0 22.5

Ag3
+ −438.89548 0 0 3.19 84.5

Ag3
– −439.15819 0 0 3.12 76.5

Ag4 −585.49395 0 0 8.76 306.9

Ag5
+ −731.68262 0 0 16.5 668.6

Ag5
– −731.94691 0 0 12.6 418.0

Ag6 −878.29971 0 0 26.8 1080.2

a These were zero to within the convergence threshold of 10−7.

centers also describes the number of basis functions - 38 and 54 per silver atom in VDZ-

PP and aVDZ-PP respectively - and thus this is a well-defined measure of system size.

As these are three-centre integrals, they formally scale cubically with system size. Power

law fits suggest that this is broadly true, with powers of ∼ 2.6 and 3.1 with and without

prescreening, respectively. The difference in scaling between quadrature and recursion is

negligible - applying prescreening improves both equally - but the prefactor for the latter is

clearly significantly smaller.

VI. CONCLUSIONS

We have presented new, efficient schemes for both the prescreening and evaluation of the

radial parts of integrals over ECPs. The prescreening yields speedups for both the most

commonly used half-numerical integration routine, and for the newly proposed recursive

routine, on the order of a factor of 1.5 in both cases. This is largely due to the closeness

of the bound. Moreover, it has been shown that it is possible to use this not simply as

a prescreening method, but as a way to evaluate the integrals. Initial attempts at doing

so result in a numerically stable and highly efficient recursive integration scheme, almost
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FIG. 7. Shown are scaled timings (relative to Ag2 in the VDZ-PP basis using the recursive scheme,

0.05 seconds) for the ECP integration steps in calculations on closed-shell silver clusters. The

number of ECP centres also corresponds to the number of basis functions (38 and 54 per silver

atom for VDZ-PP and aVDZ-PP, respectively). Results are given for the screened quadrature

with VDZ-PP (red diamonds) and aVDZ-PP (blue squares), and similarly for the recursive scheme

with scaled prescreening (black circles for VDZ-PP, gray triangles for aVDZ-PP). In addition, the

timings for a single, integral-direct SCF iteration in the aVDZ-PP basis are shown for comparison.

two orders of magnitude faster than the quadrature-based method. The careful unrolling

of the recursion relations and optimised code generation, coupled with an effective method

of prescreening, have allowed for this, most notably eliminating the numerical instabilities

of previous recursive methods. Tests on silver clusters have demonstrated that the scheme

gives the same accuracy at much reduced cost as current methods, while the prescreening

reduces the scaling with respect to system size. The approach is independent of the angular

momenta involved, and thus spin-orbit coupling integrals and analytic derivatives can be

treated identically.

SUPPLEMENTARY MATERIAL

See supplementary material for proof of the unimodality of the integrand, derivation of

base integrals, special cases of the integrals and results for CCSD(T)/aVDZ-PP calculations

on silver clusters.
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13P. Pyykkö, Adv. Quantum Chem. 11, 353 (1978).

14K. S. Pitzer, Acc. Chem. Res. 12, 271 (1979).

15S.-g. Wang, W. Liu, and W. H. E. Schwarz, J. Phys. Chem. A 106, 795 (2002).
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17P. Schwerdtfeger, L. F. Pašteka, A. Punnett, and P. O. Bowman, Nucl. Phys. A 944, 551

(2015).

18W. M. Huo and Y.-K. Kim, Chem. Phys. Lett. 319, 576 (2000).

19S. O. Odoh and G. Schreckenbach, J. Phys. Chem. A 114, 1957 (2010).

20W. A. Goddard, Phys. Rev. 174, 659 (1968).

24



21L. R. Kahn and W. A. Goddard, J. Chem. Phys. 56, 2685 (1972).

22L. R. Kahn, P. Baybutt, and D. G. Truhlar, J. Chem. Phys. 65, 3826 (1976).

23L. E. McMurchie and E. R. Davidson, J. Comput. Phys. 44, 289 (1981).

24C.-K. Skylaris, L. Gagliardi, N. C. Handy, A. G. Ioannou, S. Spencer, A. Willetts, and

A. M. Simper, Chemical Physics Letters 296, 445 (1998).

25R. Flores-Moreno, R. J. Alvarez-Mendez, A. Vela, and A. M. Köster, J. Comput. Chem.
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