623 research outputs found

    Magnetic transitions and magnetodielectric effect in the antiferromagnet SrNdFeO4_4

    Full text link
    We investigated the magnetic phase diagram of single crystals of SrNdFeO4_{4} by measuring the magnetic properties, the specific heat and the dielectric permittivity. The system has two magnetically active ions, Fe3+^{3+} and Nd3+^{3+}. The Fe3+^{3+} spins are antiferromagnetically ordered below 360 K with the moments lying in the ab-plane, and undergo a reorientation transition at about 35-37 K to an antiferromagnetic order with the moments along the c-axis. A short-range, antiferromagnetic ordering of Nd3+^{3+} along the c-axis was attributed to the reorientation of Fe3+^{3+} followed by a long-range ordering at lower temperature [S. Oyama {\it et al.} J. Phys.: Condens. Matter. {\bf 16}, 1823 (2004)]. At low temperatures and magnetic fields above 8 T, the Nd3+^{3+} moments are completely spin-polarized. The dielectric permittivity also shows anomalies associated with spin configuration changes, indicating that this compound has considerable coupling between spin and lattice. A possible magnetic structure is proposed to explain the results.Comment: 8 pages, 10 figures, submitted to PR

    Studying the influence of nitrogen seeding in a detached-like hydrogen plasma by means of numerical simulations

    Get PDF
    The leading candidate for impurity seeding in ITER is currently nitrogen. To date, there are only a few studies on the plasma chemistry driven by N2/H2 seeding and its effect on the molecular-activated recombination of incoming atomic hydrogen ions in a detached-like scenario. Numerical simulations are needed to provide insights into such mechanisms. The numerous amount of plasma chemical reactions that may occur in such an environment cannot be entirely included in a 2 or 3 -dimensional code such as Eirene. A complete global plasma model, implemented with more than 100 plasma chemical equations and 20 species, has been set up on the basis of Plasimo code. This study shows two main nitrogen-included recombination reaction paths resulted to be dominant, i.e. the ion conversion of NH followed by dissociative recombination and a proton transfer between H2+ and N2, producing N2H+. These two processes are referred to as N-MAR (nitrogen-molecular activated recombination) and have subsequently been implemented into Eunomia, a spatially-resolved Monte Carlo code, designed to simulate the neutrals inventory in linear plasma machines such as Pilot-PSI and Magnum-PSI. To study the effect of N2 on the overall recombination, three cases of study have been set up: from a defined puffing location with a constant total seeding rate of H2 + N2, three N2 ratios have been simulated, i.e. 0, 5 and 10%. The parameter monitored is the density of atomic hydrogen, being the final hydrogenic product of any recombination mechanism in the scenario considered. The difference in H density between the 0% case and the 10% case is about a factor 3. The importance of NH as electron donor is highlighted and N-MARs confirmed as reaction routes enhancing the conversion of ions to neutrals, making the heat loads to the divertor plate more tolerable. This work is a further step towards the full understanding of the role of N2-H2 molecules in a detached divertor plasma.</p

    Two-photon Lithography for 3D Magnetic Nanostructure Fabrication

    Get PDF
    Ferromagnetic materials have been utilised as recording media within data storage devices for many decades. Confinement of the material to a two dimensional plane is a significant bottleneck in achieving ultra-high recording densities and this has led to the proposition of three dimensional (3D) racetrack memories that utilise domain wall propagation along nanowires. However, the fabrication of 3D magnetic nanostructures of complex geometry is highly challenging and not easily achievable with standard lithography techniques. Here, by using a combination of two-photon lithography and electrochemical deposition, we show a new approach to construct 3D magnetic nanostructures of complex geometry. The magnetic properties are found to be intimately related to the 3D geometry of the structure and magnetic imaging experiments provide evidence of domain wall pinning at a 3D nanostructured junction

    Visual saliency and semantic incongruency influence eye movements when inspecting pictures

    Get PDF
    Models of low-level saliency predict that when we first look at a photograph our first few eye movements should be made towards visually conspicuous objects. Two experiments investigated this prediction by recording eye fixations while viewers inspected pictures of room interiors that contained objects with known saliency characteristics. Highly salient objects did attract fixations earlier than less conspicuous objects, but only in a task requiring general encoding of the whole picture. When participants were required to detect the presence of a small target, then the visual saliency of nontarget objects did not influence fixations. These results support modifications of the model that take the cognitive override of saliency into account by allowing task demands to reduce the saliency weights of task-irrelevant objects. The pictures sometimes contained incongruent objects that were taken from other rooms. These objects were used to test the hypothesis that previous reports of the early fixation of congruent objects have not been consistent because the effect depends upon the visual conspicuity of the incongruent object. There was an effect of incongruency in both experiments, with earlier fixation of objects that violated the gist of the scene, but the effect was only apparent for inconspicuous objects, which argues against the hypothesis

    Isomorph invariance of the structure and dynamics of classical crystals

    Get PDF
    This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework, which is generally a good description except significantly below melting. The existence of isomorphs for crystals is validated by simulations of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (FCC) crystalline structure; the slow vacancy-jump dynamics of a defective FCC crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in less detail, are the Wahnstrom binary Lennard-Jones crystal with the MgZn2{\rm MgZn_2} Laves crystal structure, monatomic FCC crystals of particles interacting via the Buckingham pair potential and via a novel purely repulsive pair potential diverging at a finite separation, an ortho-terphenyl molecular model, and SPC/E hexagonal ice. Except for NaCl and ice, the crystals simulated all have isomorphs. Based on these findings and previous simulations of liquid models, we conjecture that crystalline solids with isomorphs include most or all formed by atoms or molecules interacting via metallic or van der Waals forces, whereas covalently- or hydrogen-bonded crystals are not expected to have isomorphs. Crystals of ions or dipolar molecules constitute a limiting case for which isomorphs are only expected when the Coulomb interactions are relatively weak. We briefly discuss the consequences of the findings for theories of melting and crystallization

    Scientific Objectives of Einstein Telescope

    Full text link
    The advanced interferometer network will herald a new era in observational astronomy. There is a very strong science case to go beyond the advanced detector network and build detectors that operate in a frequency range from 1 Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors will be able to probe a range of topics in nuclear physics, astronomy, cosmology and fundamental physics, providing insights into many unsolved problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Implications For The Origin Of GRB 051103 From LIGO Observations

    Get PDF
    We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication, go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see the announcement for this paper on ligo.org at: http://www.ligo.org/science/Publication-GRB051103/index.ph
    • 

    corecore