292 research outputs found

    MS 085 Guide to Donald J. Fernbach, MD Papers, 1932-2000

    Get PDF
    The Donald J. Fernbach, MD papers contain materials relating to his career in pediatric oncology at Baylor College of Medicine and Texas Children\u27s Hospital. A significant amount of material comes from the Southwest Cancer Chemotherapy Study Group, of which Dr. Fernbach was a founder, and its successors the Southwest Oncology Group and Pediatric Oncology Group. The groups would meet, correspond, and collaborate on grants to conduct clinical trials for research and to improve patient care. See more at Donald J. Fernbach, MD Papers

    The 125th anniversary of the first postulation of the soil origin of endophytic bacteria – a tribute to M.L.V. Galippe

    Get PDF
    In both managed and natural ecosystems, a wide range of various non-nodulating bacteria can thrive as endophytes in the plant interior, and some can be beneficial to their hosts (Hallmann and Berg 2007; Reinhold-Hurek and Hurek 2011). Colonizationmechanisms, the ecology and functioning of these endophytic bacteria as well as their interactions with plants have been investigated (Hardoim et al. 2008; Compant et al. 2010). Although the source of colonization can also be the spermosphere, anthosphere, caulosphere, and the phyllosphere,most endophytic bacteria are derived from the soil environment (Hallmann and Berg 2007; Compant et al. 2010)

    Solving Footstep Planning as a Feasibility Problem Using L1-Norm Minimization

    Get PDF
    Extended version of the paper to be published in IEEE Robotics and Automation LettersInternational audienceOne challenge of legged locomotion on uneven terrains is to deal with both the discrete problem of selecting a contact surface for each footstep and the continuous problem of placing each footstep on the selected surface. Consequently, footstep planning can be addressed with a Mixed Integer Program (MIP), an elegant but computationally-demanding method, which can make it unsuitable for online planning. We reformulate the MIP into a cardinality problem, then approximate it as a computationally efficient l1-norm minimisation, called SL1M. Moreover, we improve the performance and convergence of SL1M by combining it with a sampling-based root trajectory planner to prune irrelevant surface candidates. Our tests on the humanoid Talos in four representative scenarios show that SL1M always converges faster than MIP. For scenarios when the combinatorial complexity is small (< 10 surfaces per step), SL1M converges at least two times faster than MIP with no need for pruning. In more complex cases, SL1M converges up to 100 times faster than MIP with the help of pruning. Moreover, pruning can also improve the MIP computation time. The versatility of the framework is shown with additional tests on the quadruped robot ANYmal

    The time course of conflict on the Cognitive Reflection Test

    Get PDF
    Reasoning that is deliberative and reflective often requires the inhibition of intuitive responses. The Cognitive Reflection Test (CRT) is designed to assess people's ability to suppress incorrect heuristic responses in favour of deliberation. Correct responding on the CRT predicts performance on a range of tasks in which intuitive processes lead to incorrect responses, suggesting indirectly that CRT performance is related to cognitive control. Yet little is known about the cognitive processes underlying performance on the CRT. In the current research, we employed a novel mouse tracking methodology to capture the time-course of reasoning on the CRT. Analysis of mouse cursor trajectories revealed that participants were initially drawn towards the incorrect (i.e., intuitive) option even when the correct (deliberative) option was ultimately chosen. Conversely, participants were not attracted to the correct option when they ultimately chose the incorrect intuitive one. We conclude that intuitive processes are activated automatically on the CRT and must be inhibited in order to respond correctly. When participants responded intuitively, there was no evidence that deliberative reasoning had become engaged

    KIM-1 and NGAL: new markers of obstructive nephropathy

    Get PDF
    Congenital obstructive nephropathy is the primary cause of chronic renal failure in children. Rapid diagnosis and initiation of the treatment are vital to preserve function and/or to slow down renal injury. The aim of our study was to determine whether urinary (u) kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) may be useful non-invasive biomarkers in children with congenital hydronephrosis (HN) caused by ureteropelvic junction obstruction. The study cohort consisted of 20 children with severe HN who required surgery (median age 2.16 years) and two control groups (control group 1: 20 patients with mild, non-obstructive HN; control group 2: 25 healthy children). All of the children had normal renal function. Immunoenzymatic ELISA commercial kits were used to measure uKIM-1 and uNGAL concentrations. The preoperative median uKIM-1/creatinine (cr.) and uNGAL levels were significantly greater in the children with severe HN than in both control groups. Three months after surgery, uNGAL had decreased significantly (p < 0.05) in the children with severe HN, but was still higher than that in control group 2 children (p < 0.05). Receiver operator characteristic analyses revealed a good diagnostic profile for uKIM-1 and uNGAL in terms of identifying a differential renal function of <40% in HN patients (area under the curve (AUC) 0.8 and 0.814, respectively) and <45% in all examined children (AUC 0.779 and 0.868, respectively). Based on these results, we suggest that increasing uNGAL and uKIM-1 levels are associated with worsening obstruction. Further studies are required to confirm a potential application of uKIM-1 and uNGAL as useful biomarkers for the diagnosis and progression of chronic kidney disease

    SNP genotyping to screen for a common deletion in CHARGE Syndrome

    Get PDF
    BACKGROUND: CHARGE syndrome is a complex of birth defects including coloboma, choanal atresia, ear malformations and deafness, cardiac defects, and growth delay. We have previously hypothesized that CHARGE syndrome could be caused by unidentified genomic microdeletion, but no such deletion was detected using short tandem repeat (STR) markers spaced an average of 5 cM apart. Recently, microdeletion at 8q12 locus was reported in two patients with CHARGE, although point mutation in CHD7 on chromosome 8 was the underlying etiology in most of the affected patients. METHODS: We have extended our previous study by employing a much higher density of SNP markers (3258) with an average spacing of approximately 800 kb. These SNP markers are diallelic and, therefore, have much different properties for detection of deletions than STRs. RESULTS: A global error rate estimate was produced based on Mendelian inconsistency. One marker, rs431722 exceeded the expected frequency of inconsistencies, but no deletion could be demonstrated after retesting the 4 inconsistent pedigrees with local flanking markers or by FISH with the corresponding BAC clone. Expected deletion detection (EDD) was used to assess the coverage of specific intervals over the genome by deriving the probability of detecting a common loss of heterozygosity event over each genomic interval. This analysis estimated the fraction of unobserved deletions, taking into account the allele frequencies at the SNPs, the known marker spacing and sample size. CONCLUSIONS: The results of our genotyping indicate that more than 35% of the genome is included in regions with very low probability of a deletion of at least 2 Mb

    Genetic architecture of laterality defects revealed by whole exome sequencing

    Get PDF
    Aberrant left-right patterning in the developing human embryo can lead to a broad spectrum of congenital malformations. The causes of most laterality defects are not known, with variants in established genes accounting for <20% of cases. We sought to characterize the genetic spectrum of these conditions by performing whole-exome sequencing of 323 unrelated laterality cases. We investigated the role of rare, predicted-damaging variation in 1726 putative laterality candidate genes derived from model organisms, pathway analyses, and human phenotypes. We also evaluated the contribution of homo/hemizygous exon deletions and gene-based burden of rare variation. A total of 28 candidate variants (26 rare predicted-damaging variants and 2 hemizygous deletions) were identified, including variants in genes known to cause heterotaxy and primary ciliary dyskinesia (ACVR2B, NODAL, ZIC3, DNAI1, DNAH5, HYDIN, MMP21), and genes without a human phenotype association, but with prior evidence for a role in embryonic laterality or cardiac development. Sanger validation of the latter variants in probands and their parents revealed no de novo variants, but apparent transmitted heterozygous (ROCK2, ISL1, SMAD2), and hemizygous (RAI2, RIPPLY1) variant patterns. Collectively, these variants account for 7.1% of our study subjects. We also observe evidence for an excess burden of rare, predicted loss-of-function variation in PXDNL and BMS1- two genes relevant to the broader laterality phenotype. These findings highlight potential new genes in the development of laterality defects, and suggest extensive locus heterogeneity and complex genetic models in this class of birth defects

    The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes

    Get PDF
    All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.EU Cost Action [FA1103, 312117]; FWF (Austrian Science Foundation) [P26203-B22, P24569-B25]; Portuguese FCT (Foundation for Science and Technology) [SFRH/BPD/78931/2011]info:eu-repo/semantics/publishedVersio
    • 

    corecore