1,629 research outputs found

    Multiple episodes of star formation in the CN15/16/17 molecular complex

    Full text link
    We have started a campaign to identify massive star clusters inside bright molecular bubbles towards the Galactic Center. The CN15/16/17 molecular complex is the first example of our study. The region is characterized by the presence of two young clusters, DB10 and DB11, visible in the NIR, an ultra-compact HII region identified in the radio, several young stellar objects visible in the MIR, a bright diffuse nebulosity at 8\mu m coming from PAHs and sub-mm continuum emission revealing the presence of cold dust. Given its position on the sky (l=0.58, b=-0.85) and its kinematic distance of ~7.5 kpc, the region was thought to be a very massive site of star formation in proximity of the CMZ. The cluster DB11 was estimated to be as massive as 10^4 M_sun. However the region's properties were known only through photometry and its kinematic distance was very uncertain given its location at the tangential point. We aimed at better characterizing the region and assess whether it could be a site of massive star formation located close to the Galactic Center. We have obtained NTT/SofI JHKs photometry and long slit K band spectroscopy of the brightest members. We have additionally collected data in the radio, sub-mm and mid infrared, resulting in a quite different picture of the region. We have confirmed the presence of massive early B type stars and have derived a spectro-photometric distance of ~1.2 kpc, much smaller than the kinematic distance. Adopting this distance we obtain clusters masses of M(DB10) ~ 170 M_sun and M(DB11) ~ 275 M_sun. This is consistent with the absence of any O star, confirmed by the excitation/ionization status of the nebula. No HeI diffuse emission is detected in our spectroscopic observations at 2.113\mu m, which would be expected if the region was hosting more massive stars. Radio continuum measurements are also consistent with the region hosting at most early B stars.Comment: Accepted for publication in Astronomy and Astrophysics. Fig. 1 and 3 presented in reduced resolutio

    T helper cell polarisation as a measure of the maturation of the immune response.

    Get PDF
    BACKGROUND: T helper cell polarisation is important under chronic immune stimulatory conditions and drives the type of the evolving immune response. Mice treated with superantigens in vivo display strong effects on Th subset differentiation. The aim of the study was to detect the intrinsic capacity of T cells to polarise under various ex vivo conditions. METHODS: Purified CD4+ T cells obtained from super-antigen-treated mice were cultured under Th polarising conditions in vitro. By combining intracellular cytokine staining and subsequent flow cytometric analysis with quantitative cytokine measurements in culture supernatants by enzyme-linked immunosorbent assay (ELISA), the differential Th polarising capacity of the treatment can be detected in a qualitative and quantitative manner. RESULTS AND CONCLUSIONS: BALB/c mice were shown to be biased to develop strong Th2 polarised immune responses using Th0 stimulation of purified CD4+ T cells from phosphate-buffered saline-treated mice. Nevertheless, our analysis methodology convincingly showed that even in these mice, Toxic Shock Syndrome Toxin-1 treatment in vivo resulted in a significantly stronger Th1 polarising effect than control treatment. Our results indicate that populations of Th cells can be assessed individually for their differential Th1 or Th2 maturation capacity in vivo by analysing robust in vitro polarisation cultures combined with intracellular cytokine staining and ELISA

    Adiabatic orientation of rotating dipole molecules in an external field

    Get PDF
    The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection and focusing experiments, arises because instead of acquiring thermal equilibrium in the field region, the beam ensemble typically enters the field adiabatically, i.e., with a previously fixed distribution of rotational states. We discuss the orientation of rigid symmetric-top systems with a body-fixed electric or magnetic dipole moment. The analytical expression for their "adiabatic-entry" orientation is elucidated and compared with exact numerical results for a range of parameters. The differences between the polarization of thermodynamic and "adiabatic-entry" ensembles, of prolate and oblate tops, and of symmetric-top and linear rotators are illustrated and identified.Comment: 18 pages, 4 figure

    Hard X-ray standing-wave photoemission insights into the structure of an epitaxial Fe/MgO multilayer magnetic tunnel junction

    Get PDF
    The Fe/MgO magnetic tunnel junction is a classic spintronic system, with current importance technologically and interest for future innovation. The key magnetic properties are linked directly to the structure of hard-to-access buried interfaces, and the Fe and MgO components near the surface are unstable when exposed to air, making a deeper probing, nondestructive, in-situ measurement ideal for this system. We have thus applied hard X-ray photoemission spectroscopy (HXPS) and standing-wave (SW) HXPS in the few kilo-electron-volt energy range to probe the structure of an epitaxially grown MgO/Fe superlattice. The superlattice consists of 9 repeats of MgO grown on Fe by magnetron sputtering on an MgO(001) substrate, with a protective Al2O3 capping layer. We determine through SW-HXPS that 8 of the 9 repeats are similar and ordered, with a period of 33 ± 4 Å, with the minor presence of FeO at the interfaces and a significantly distorted top bilayer with ca. 3 times the oxidation of the lower layers at the top MgO/Fe interface. There is evidence of asymmetrical oxidation on the top and bottom of the Fe layers. We find agreement with dark-field scanning transmission electron microscope (STEM) and X-ray reflectivity measurements. Through the STEM measurements, we confirm an overall epitaxial stack with dislocations and warping at the interfaces of ca. 5 Å. We also note a distinct difference in the top bilayer, especially MgO, with possible Fe inclusions. We thus demonstrate that SW-HXPS can be used to probe deep buried interfaces of novel magnetic devices with few-angstrom precision

    Catalytic wet peroxide oxidation of imidazolium-based ionic liquids: Catalyst stability and biodegradability enhancement

    Full text link
    This Accepted Manuscript will be available for reuse under a CC BY-NC-ND license after 24 months of embargo periodThe catalytic wet peroxide oxidation (CWPO) of the imidazolium-based ionic liquids 1-butyl-3-methylimidazolium chloride (BmimCl), 1-butyl-3-methylimidazolium acetate (BmimAc), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BmimNTf2), 1-hexyl-3-methylimidazolium chloride (HmimCl) and 1-decyl-3-methylimidazolium chloride (DmimCl) was examined by using a Fe catalyst supported on alumina (Fe2O3/Al2O3) that was prepared by incipient wetness impregnation. Variable H2O2 doses from 0.5 to 1.5 times the stoichiometric value provided similar results in terms mg TOC removed per mg H2O2 decomposed at 80 °C (0.033 mgTOC mgH2O2−1), all allowing complete Bmim+ removal. Raising the reaction temperature to 90 °C increased the mineralization rate up to 40% TOC conversion. Differences in TOC conversion among counteranions (chloride, acetate and NTf2−) were negligible. A plausible reaction pathway is propose involving hydroxylated compounds and short-chain organic acids as reaction byproducts. CWPO markedly increased the subsequent biodegradability of the IL test solutions and led there to TOC conversions after CWPO-biodegradability assays of 55–60%. The Fe2O3/Al2O3 catalyst exhibited high long-term stability; thus, it retained most of its properties and underwent negligible Fe leaching.The authors acknowledge funding from Spain’s MINECO (CTM2016-76564-R), the Madrid Regional Government (S2013/MAE-2716), UAM-Santander (CEAL-AL/2015-08) and UNAM Engineering Institute (II-4307). I. F. Mena also thanks MINECO and ESF for award of a research gran

    Direct determination of the sign of the NO dipole moment.

    Get PDF
    We report a novel approach for determining the sign of permanent dipole moments, using nitric oxide [NO(v=0)] as an example. State-selected NO (j=|m|=|Ω=1/2) molecules are focused using a hexapole and oriented in a strong dc electric field. The angular distributions of ionic fragments resulting from extreme ultraviolet single-photon and multiphoton dissociative ionization at 400 and 800 nm are measured and indicate that the dipole moment is negative (corresponding to N-O+). The experiments thus rule out an error in the sign of the dipole of NO as the possible source of a remarkable discrepancy between previous theoretical and experimental work on orientation effects in bimolecular collisions involving oriented NO. © 2007 The American Physical Society

    Probing the Early Evolution of Young High-Mass Stars

    Get PDF
    Near-infrared imaging surveys of high-mass star-forming regions reveal an amazingly complex interplay between star formation and the environment (Churchwell et al. 2006; Alvarez et al. 2004). By means of near-IR spectroscopy the embedded massive young stars can be characterized and placed in the context of their birth site. However, so far spectroscopic surveys have been hopelessly incomplete, hampering any systematic study of these very young massive stars. New integral field instrumentation available at ESO has opened the possibility to take a huge step forward by obtaining a full spectral inventory of the youngest massive stellar populations in star-forming regions currently accessible. Simultaneously, the analysis of the extended emission allows the characterization of the environmental conditions. The Formation and Early Evolution of Massive Stars (FEMS) collaboration aims at setting up a large observing campaign to obtain a full census of the stellar content, ionized material, outflows and PDR's over a sample of regions that covers a large parameter space. Complementary radio, mm and infrared observations will be used for the characterization of the deeply embedded population. For the first eight regions we have obtained 40 hours of SINFONI observations. In this contribution, we present the first results on three regions that illustrate the potential of this strategy.Comment: To appear in ASP Conf. Proceedings of "Massive Star Formation: Observations confront Theory", H. Beuther et al. (eds.), held in Heidelberg, September 200

    Photon Dominated Regions in NGC 3603

    Get PDF
    Aims: We aim at deriving the excitation conditions of the interstellar gas as well as the local FUV intensities in the molecular cloud surrounding NGC 3603 to get a coherent picture of how the gas is energized by the central stars. Methods: The NANTEN2-4m submillimeter antenna is used to map the [CI] 1-0, 2-1 and CO 4-3, 7-6 lines in a 2' x 2' region around the young OB cluster NGC 3603 YC. These data are combined with C18O 2-1 data, HIRES-processed IRAS 60 and 100 micron maps of the FIR continuum, and Spitzer/IRAC maps. Results: The NANTEN2 observations show the presence of two molecular clumps located south-east and south-west of the cluster and confirm the overall structure already found by previous CS and C18O observations. We find a slight position offset of the peak intensity of CO and [CI], and the atomic carbon appears to be further extended compared to the molecular material. We used the HIRES far-infrared dust data to derive a map of the FUV field heating the dust. We constrain the FUV field to values of \chi = 3 - 6 \times 10^3 in units of the Draine field across the clouds. Approximately 0.2 to 0.3 % of the total FUV energy is re-emitted in the [CII] 158 {\mu}m cooling line observed by ISO. Applying LTE and escape probability calculations, we derive temperatures (TMM1 = 43 K, TMM2 = 47 K), column densities (N(MM1) = 0.9 \times 10^22 cm^-2, N(MM2) = 2.5 \times 10^22 cm^-2) and densities (n(MM1) = 3 \times 10^3 cm^-3, n(MM2) = 10^3 -10^4 cm^-3) for the two observed molecular clumps MM1 and MM2. Conclusions: The cluster is strongly interacting with the ambient molecular cloud, governing its structure and physical conditions. A stability analysis shows the existence of gravitationally collapsing gas clumps which should lead to star formation. Embedded IR sources have already been observed in the outskirts of the molecular cloud and seem to support our conclusions.Comment: 13 pages, 10 figures, accepted for publication by A&

    Stellar Populations in the Galactic Center

    Full text link
    We discuss the stellar content of the Galactic Center, and in particular, recent estimates of the star formation rate (SFR). We discuss pros and cons of the different stellar tracers and focus our attention on the SFR based on the three classical Cepheids recently discovered in the Galactic Center. We also discuss stellar populations in field and cluster stars and present some preliminary results based on near-infrared photometry of a field centered on the young massive cluster Arches. We also provide a new estimate of the true distance modulus to the Galactic Center and we found 14.49±\pm0.02(standard)±\pm0.10(systematic) mag (7.91±0.08±0.40\pm0.08\pm0.40 kpc). Current estimate agrees quite well with similar photometric and kinematic distance determinations available in the literature. We also discuss the metallicity gradient of the thin disk and the sharp change in the slope when moving across the edge of the inner disk, the Galactic Bar and the Galactic Center. The difference becomes even more compelling if we take into account that metal abundances are based on young stellar tracers (classical Cepheids, Red Supergiants, Luminous Blue Variables). Finally, we briefly outline the possible mechanisms that might account for current empirical evidence.Comment: To be published in the Astrophysics and Space Science Proceeding

    The Massive Star Content of NGC 3603

    Full text link
    We investigate the massive star content of NGC 3603, the closest known giant H II region. We have obtained spectra of 26 stars in the central cluster using the Baade 6.5-m telescope (Magellan I). Of these 26 stars, 16 had no previous spectroscopy. We also obtained photometry of all of the stars with previous or new spectroscopy, primarily using archival HST ACS/HRC images. We use these data to derive an improved distance to the cluster, and to construct an H-R diagram for discussing the masses and ages of the massive star content of this cluster.Comment: Accepted by the Astronomical Journal. This revision updates the coordinates in Table 1 by (-0.18sec, +0.2") to place them on the UCAC2 syste
    corecore