437 research outputs found

    Monitoring Of 14 Mev Neutrons

    Get PDF
    Long-lived fission products and minor actinides produced in nuclear power plants are the most radiotoxic nuclear wastes. They can be transmuted into stable nuclei or into nuclei with shorter lifetime thanks to the so-called Accelerator Driven Systems (ADS), consisting of the coupling of an intense high energy proton beam, a spallation target and a sub-critical reactor core. For safety reasons, an on-line and robust measurement of the reactivity during loading and power operation is mandatory. The investigation of the relationship between the current of the accelerator and the power level (or neutron flux) of the reactor appears to be powerful, any change in reactivity being accessible through the measurement of the current and the flux. Such a relationship will be studied in an experiment to be performed at the YALINA facility (JIPNR Sosny - Belarus) in the framework of the EUROTRANS IP (6th^{th} FP). At this installation, 14 MeV neutrons are produced in T(d,n)4^{4}He reactions by a deuteron beam impinging on a TiT target. Due to the tritium consumption over time, the intensity of the deuteron beam cannot be used for the monitoring of the neutron beam. The source neutron yield itself has to be accessed. This contribution describes the performance of a three-element silicon telescope dedicate

    Scandal - A Facility For Elastic Neutron Scattering Studies in the 50-130 MeV Range

    Get PDF
    A facility for detection of scattered neutrons in the energy interval 50−130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), is part of the standard detection system at the 20-180 MeV neutron beam facility of the The Svedberg Laboratory, Uppsala. It has primarily been used for studies of elastic neutron scattering, but it has been employed for (n,p) and (n,d) reaction experiments as well. Results of recent experiments are presented to illustrate the performance of the spectrometer. Recently, the facility has been upgraded to perform also (n,Xn') experiments. For this purpose, a new converter, CLODIA, has been developed and installed. Preliminary results of the commissioning of CLODIA will be presented

    Spallation Neutron Production by 0.8, 1.2 and 1.6 GeV Protons on various Targets

    Full text link
    Spallation neutron production in proton induced reactions on Al, Fe, Zr, W, Pb and Th targets at 1.2 GeV and on Fe and Pb at 0.8, and 1.6 GeV measured at the SATURNE accelerator in Saclay is reported. The experimental double-differential cross-sections are compared with calculations performed with different intra-nuclear cascade models implemented in high energy transport codes. The broad angular coverage also allowed the determination of average neutron multiplicities above 2 MeV. Deficiencies in some of the models commonly used for applications are pointed out.Comment: 20 pages, 32 figures, revised version, accepted fpr publication in Phys. Rev.

    Neutron-induced Light Ion Production From Fe, Pb And U At 96 Mev

    Get PDF
    Double-differential cross sections for light-ion production (up to A=4) induced by 96 MeV neutrons have been measured for nat^{nat}Fe, nat^{nat}Pb and nat^{nat}U. The experiments have been performed at the The Svedberg Laboratory in Uppsala, using two independent devices, MEDLEY and SCANDAL. The recorded data cover a wide angular range (20Âș - 160Âș) with low energy thresholds. The work was performed within the HINDAS collaboration studying three of the most important nuclei for incineration of nuclear waste with accelerator-driven systems (ADS). The obtained cross section data are of particular interest for the understanding of the so-called pre-equilibrium stage in a nuclear reaction and are compared with model calculations performed with the GNASH, TALYS and PREEQ code

    Nucleon-induced reactions at intermediate energies: New data at 96 MeV and theoretical status

    Full text link
    Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.Comment: 21 pages, 28 figure

    Universal fluctuations in heavy-ion collisions in the Fermi energy domain

    Full text link
    We discuss the scaling laws of both the charged fragments multiplicity fluctuations and the charge of the largest fragment fluctuations for Xe+Sn collisions in the range of bombarding energies between 25 MeV/A and 50 MeV/A. We show close to E_{lab}=32 MeV/A the transition in the fluctuation regime of the charge of the largest fragment which is compatible with the transition from the ordered to disordered phase of excited nuclear matter. The size (charge) of the largest fragment is closely related to the order parameter characterizing this process.Comment: 4 pages, 3 figure

    Evidence for Spinodal Decomposition in Nuclear Multifragmentation

    Full text link
    Multifragmentation of a ``fused system'' was observed for central collisions between 32 MeV/nucleon 129Xe and natSn. Most of the resulting charged products were well identified thanks to the high performances of the INDRA 4pi array. Experimental higher-order charge correlations for fragments show a weak but non ambiguous enhancement of events with nearly equal-sized fragments. Supported by dynamical calculations in which spinodal decomposition is simulated, this observed enhancement is interpreted as a ``fossil'' signal of spinodal instabilities in finite nuclear systems.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Letter

    Z-dependent Barriers in Multifragmentation from Poissonian Reducibility and Thermal Scaling

    Full text link
    We explore the natural limit of binomial reducibility in nuclear multifragmentation by constructing excitation functions for intermediate mass fragments (IMF) of a given element Z. The resulting multiplicity distributions for each window of transverse energy are Poissonian. Thermal scaling is observed in the linear Arrhenius plots made from the average multiplicity of each element. ``Emission barriers'' are extracted from the slopes of the Arrhenius plots and their possible origin is discussed.Comment: 15 pages including 4 .ps figures. Submitted to Phys. Rev. Letters. Also available at http://csa5.lbl.gov/moretto

    Multifragmentation of a very heavy nuclear system (I): Selection of single-source events

    Full text link
    A sample of `single-source' events, compatible with the multifragmentation of very heavy fused systems, are isolated among well-measured 155Gd+natU 36AMeV reactions by examining the evolution of the kinematics of fragments with Z>=5 as a function of the dissipated energy and loss of memory of the entrance channel. Single-source events are found to be the result of very central collisions. Such central collisions may also lead to multiple fragment emission due to the decay of excited projectile- and target-like nuclei and so-called `neck' emission, and for this reason the isolation of single-source events is very difficult. Event-selection criteria based on centrality of collisions, or on the isotropy of the emitted fragments in each event, are found to be inefficient to separate the two mechanisms, unless they take into account the redistribution of fragments' kinetic energies into directions perpendicular to the beam axis. The selected events are good candidates to look for bulk effects in the multifragmentation process.Comment: 39 pages including 15 figures; submitted to Nucl. Phys.
    • 

    corecore