2,703 research outputs found

    Behaviours Associated with Male “Sweethearting” (Infidelity) in Heterosexual Relationships in The Bahamas

    Get PDF
    This paper presents incidental data on sweethearting from a study on sexual violence in intimate-partner relationships between men and women in The Bahamas. Females participating in the study reported male infidelity to be common (with about 20% and possibly as many as about 50% of men being unfaithful) in both unmarried and married relationships. Associated with infidelity were behaviours of concern, such as physical and sexual violence, as well as psychological abuse by male partners. These abusive behaviours were associated with the woman feeling that she would leave the relationship if she could, and that the relationship was not a loving one. Furthermore, the study suggests that unfaithful married men are more likely to demonstrate activities of concern (in the form of elevated scores for domestic violence and psychological abuse) compared to unfaithful unmarried men in relationships with women

    Citrus Varieties for the Lower Rio Grande Valley.

    Get PDF
    36 p

    Electron spin coherence near room temperature in magnetic quantum dots

    Get PDF
    We report on an example of confined magnetic ions with long spin coherence near room temperature. This was achieved by confining single Mn2+ spins in colloidal semiconductor quantum dots (QDs) and by dispersing the QDs in a proton-spin free matrix. The controlled suppression of Mn–Mn interactions and minimization of Mn–nuclear spin dipolar interactions result in unprecedentedly long phase memory (TM ~ 8 μs) and spin–lattice relaxation (T1 ~ 10 ms) time constants for Mn2+ ions at T = 4.5 K, and in electron spin coherence observable near room temperature (TM ~ 1 μs)

    When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation

    Full text link
    Active Brownian particles (ABPs, such as self-phoretic colloids) swim at fixed speed vv along a body-axis u{\bf u} that rotates by slow angular diffusion. Run-and-tumble particles (RTPs, such as motile bacteria) swim with constant \u until a random tumble event suddenly decorrelates the orientation. We show that when the motility parameters depend on density ρ\rho but not on u{\bf u}, the coarse-grained fluctuating hydrodynamics of interacting ABPs and RTPs can be mapped onto each other and are thus strictly equivalent. In both cases, a steeply enough decreasing v(ρ)v(\rho) causes phase separation in dimensions d=2,3d=2,3, even when no attractive forces act between the particles. This points to a generic role for motility-induced phase separation in active matter. However, we show that the ABP/RTP equivalence does not automatically extend to the more general case of \u-dependent motilities

    Yield stress, heterogeneities and activated processes in soft glassy materials

    Full text link
    The rheological behavior of soft glassy materials basically results from the interplay between shearing forces and an intrinsic slow dynamics. This competition can be described by a microscopic theory, which can be viewed as a nonequilibrium schematic mode-coupling theory. This statistical mechanics approach to rheology results in a series of detailed theoretical predictions, some of which still awaiting for their experimental verification. We present new, preliminary, results about the description of yield stress, flow heterogeneities and activated processes within this theoretical framework.Comment: Paper presented at "III Workshop on Non Equilibrium Phenomena...", Pisa 22-27 Sep. 200

    Using MGA to shorten the beef breeding season (2002)

    Get PDF
    Modified conventional synchronization systems for beef cows boost fertility and increase the total number of females that can be inseminated.New March 2002 -- Extension website

    Fluctuation-dissipation relations in the activated regime of simple strong-glass models

    Full text link
    We study the out-of-equilibrium fluctuation-dissipation (FD) relations in the low temperature, finite time, physical aging regime of two simple models with strong glass behaviour, the Fredrickson-Andersen model and the square-plaquette interaction model. We explicitly show the existence of unique, waiting-time independent dynamical FD relations. While in the Fredrickson-Andersen model the FD theorem is obeyed at all times, the plaquette model displays piecewise linear FD relations, similar to what is found in disordered mean-field models and in simulations of supercooled liquids, and despite the fact that its static properties are trivial. We discuss the wider implications of these results.Comment: 4 pages, 3 figure

    Ocean processes at the Antarctic continental slope

    Get PDF
    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An © 2014 The Authors

    Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models

    Get PDF
    A major source of error for repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is the phase delay in radio signal propagation through the atmosphere (especially the part due to tropospheric water vapour). Based on experience with the Global Positioning System (GPS)/Moderate Resolution Imaging Spectroradiometer (MODIS) integrated model and the Medium Resolution Imaging Spectrometer (MERIS) correction model, two new advanced InSAR water vapour correction models are demonstrated using both MERIS and MODIS data: (1) the MERIS/MODIS combination correction model (MMCC); and (2) the MERIS/MODIS stacked correction model (MMSC). The applications of both the MMCC and MMSC models to ENVISAT Advanced Synthetic Aperture Radar (ASAR) data over the Southern California Integrated GPS Network (SCIGN) region showed a significant reduction in water vapour effects on ASAR interferograms, with the root mean square (RMS) differences between GPS- and InSAR-derived range changes in the line-of-sight (LOS) direction decreasing from ,10mm before correction to ,5mm after correction, which is similar to the GPS/MODIS integrated and MERIS correction models. It is expected that these two advanced water vapour correction models can expand the application of MERIS and MODIS data for InSAR atmospheric correction. A simple but effective approach has been developed to destripe Terra MODIS images contaminated by radiometric calibration errors. Another two limiting factors on the MMCC and MMSC models have also been investigated in this paper: (1) the impact of the time difference between MODIS and SAR data; and (2) the frequency of cloud-free conditions at the global scale
    corecore