59 research outputs found

    Influence of the particle size and animal slurry type on the potential of nitrogen mineralization after soil incorporation

    Get PDF
    RAMIRAN International ConferenceAnimal manures are rich in organic matter and nutrients, namely nitrogen (N) and, consequently, widely applied to soil as organic fertilizers. However, a large part of the nitrogen contained in animal manures is in the organic form and so not directly available for plants. Indeed, organic N has to be mineralized prior to plant uptake (Rees and Castle, 2002). Several manure characteristics as the C:N ratio (Chadwick et al., 2000), the lignin content (Kristensen, 1996) and the NH4 +/organic N ratio (Beauchamp and Paul, 1989) have been suggested as indicators of the plant-available N. More recently, Fangueiro et al. (2008) showed that the potential of N mineralization (PNM) of cattle slurry is inversely correlated with slurry particle size: finest fractions are the particle-size fractions from which N mineralization occurs in slurries whereas coarser fractions are associated with immobilization. Furthermore, Moller et al. (2002) reported that animal diet and anaerobic decomposition during storage in slurry channels and stores affect the slurry particle size distribution. Such information is of great interest since the finest slurry particle size should infiltrate the soil more easily and quickly relative to the coarser slurry particle size that should remain close to soil surface. Furthermore, mechanical slurry separation is now performed in many pig and dairy farms in order to improve slurry management in terms of nutrients utilization and reducing costs related to slurry storage. Slurry separation by screw press leads to a nutrient rich organic solid fraction (0.7– 3.2 mm particles) that may be composted and a liquid fraction that can be used for fertigation. In the present study, three types of slurry (pig, duck and cattle) were separated into 4 slurry particle size fractions (>2000 um, 2000-500 um, 500-100 um, <100 um) in order to assess the influence of the type of slurry and slurry particle size on the PNM after soil incorporation

    Impact of cattle slurry treatment by separation and acidification on gaseous emissions after soil application

    Get PDF
    Objectives: Cattle-slurry management became a priority in many livestock farms and slurry treatment is used to increase the fertilizer value of slurry and/or minimize its environmental impact. Indeed, significant emissions of ammonia (NH3) and greenhouse gases (GHG) as nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) can occur during and after slurry application to soil. Application of acidified slurry or liquid fraction (LF) obtained by solid-liquid separation are two alternatives to raw slurry application that have proven to be efficient to minimize ammonia emissions. However, few is known about its effect on GHG emissions. The aim of the present work was to assess the efficiency of cattle slurry treatment by acidification and/or solid liquid separation to mitigate ammonia (NH3) and greenhouse gases (GHG) emissions following surface application to a sandy loam soil

    Characterization of polyester with fiberglass materials as reinforcement in interior dividing walls

    Get PDF
    Some synthetic fibers present better mechanical performance compared with the natural fibers. Therefor research works were carried out to focus the characterization of polyester and glass fibers to be used as reinforcements in the internal dividing walls. Results from polyester fabrics made of compression with or without fiberglass were obtained

    Development of reinforced composite sandwich panels based on 3D fabrics

    Get PDF
    relative new type of sandwich material was investigated, based on 3D knitted sandwich fabric preforms. Due to the integrally interlacement of both sandwich-fabric the skins by the connection yarns – core debonding resistance of panels and structures based on the perform is very high. [1]. In this work the mechanical performance of sandwich composite panels based on sandwich knitted fabrics is presented and discussed. Different 3D sandwich knitted fabric performs have been produced varying the thickness and the interlacement pattern. Composite panels using these performs have been produced using vacuum infusion technique. Panel thicknesses of 8, 15 and 25 mm, using two resin types – polyester and epoxy – have been produced. Materials thus obtained have been tested in tensile, bending and impact. The results obtained are presented, discussed and compared to models. Various samples of 3D sandwich spacer fabrics using vacuum infusion process have been produced in order to study the impregnation process. The dimensional properties investigated for non-impregnated core structures include cross-threads density, areal mass, yarns linear density, etc. Results obtained show that the mechanical performances vary according to the type of 3D knitted sandwich perform and the type of resin used

    Proportion, composition and potencial N mineralisation of particle size fractions obtained by mechanical separation of animal slurry

    Get PDF
    Research PaperMechanical slurry separation is a useful technology for slurry management on farms. The characteristics of the fractions obtained depend on the separation efficiency and on the characteristics of the original slurry. In the present work, three types of slurry e pig, cow and duck e were separated into 4 particle size fractions. The proportion, composition in terms of carbon and nutrients as nitrogen (N) phosphorus (P) and potassium (K) was evaluated. The potential of N mineralisation of whole slurries, and each fraction after soil application, was assessed. Results of the study showed that the characteristics of the slurry fractions obtained depend strongly on the slurry type considered, namely on its dry matter (DM) content. A positive value of PNM was observed with the 3 slurry types and 4 fractions considered, indicating that no N immobilisation occurred. Nevertheless, results showed that the value of PNM vary significantly (P < 0.05) with slurry types and slurry particle size fractions

    Monitorização de estruturas de construção a partir de varões compósitos entrançados (BCRs)

    Get PDF
    O presente trabalho surge no âmbito de um estudo em que foram desenvolvidos varões de compósito entrançados (BCRs) piezoresistivos através da incorporação de um filamento de fibra de vidro impregnado com nanotubos de carbono (CNTs). Diferentes concentrações mássicas de CNTs [0%, 0,5%, 1%, 1,5%, 2% e 2,5%] foram dispersas em formulações poliméricas de resina epóxi e ácido polilático (PLA). Estas formulações foram, em seguida, utilizadas para impregnar os filamentos de fibra de vidro com pré-tratamento alcalino. O efeito do pré-tratamento alcalino dos filamentos de fibra de vidro dos BCRs foi caracterizado pela técnica de espectroscopia de infravermelho por transformada de Fourier (FTIR). O desempenho piezoresistivo dos BCRs funcionalizados foi avaliado usando um set-up dedicado para medir, simultaneamente, a resposta de deformação mecânica e variação de resistência elétrica, durante cargas de tração cíclicas. Através dos resultados, verificou-se que o sensor piezoresistivo estrutural obtido apresenta uma sensibilidade adequada para substituir varões de aço de alta densidade e suscetíveis à oxidação nas armaduras de betão, por uma estrutura de monitorização inteligente.The present work arises from a study in which piezoresistive braided composite rods (BCRs) were developed by incorporating a glass fibre filament impregnated with carbon nanotubes (CNTs). Different mass concentrations of CNTs [0%, 0.5%, 1%, 1.5%, 2% and 2.5%] were dispersed in epoxy resin and polylactic acid (PLA) polymer formulations. These formulations were then used to impregnate the glass fibre filaments with alkaline pre-treatment. The alkaline pre-treatment effect of the BCRs glass fibre filaments was characterised by Fourier-transform infrared spectroscopy (FTIR) technique. The piezoresistive performance of the functionalised BCRs was evaluated using a dedicated set-up to, simultaneously, measure the mechanical strain and electrical resistance variation response, during cyclic tensile loads. Through the results, it was found that the obtained structural piezoresistive sensor presents a suitable sensitivity to replace high density and oxidation susceptible steel bars in concrete reinforcement with a smart monitoring structure

    The biomimetic surface topography of Rubus fruticosus leaves stimulate the induction of osteogenic differentiation of rBMSCs

    Get PDF
    The interaction between cells and biomaterials is essential for the success of biomedical applications in which the implantation of biomaterials in the human body is necessary. It has been demonstrated that material's chemical, mechanical, and structural properties can influence cell behaviour. The surface topography of biomaterials is a physical property that can have a major role in mediating cellâ material interactions. This interaction can lead to different cell responses regarding cell motility, proliferation, migration, and even differentiation. The combination of biomaterials with mesenchymal stem cells (MSCs) for bone regeneration is a promising strategy to avoid the need for autologous transplant of bone. Surface topography was also associated with the capacity to control MSCs differentiation. Most of the topographies studied so far involve machine-generated surface topographies. Herein, our strategy differentiates from the above mentioned since we selected natural surface topographies that can modulate cell functions for regenerative medicine strategies. Rubus fruticosus leaf was the selected topography to be replicated in polycaprolactone (PCL) membranes through polydimethylsiloxane moulding and using soft lithography. Afterwards, rat bone marrow stem cells (rBMSCs) were seeded at the surface of the imprinted PCL membranes to characterize the bioactive potential of our biomimetic surface topography to drive rBMSCs differentiation into the osteogenic lineage. The selected surface topography in combination with the osteogenic inductive medium reveals having a synergistic effect promoting osteogenic differentiation.This work is a result of the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and Portuguese Foundation for Science and Technology under the doctoral programme in Tissue Engineering, Regenerative Medicine and Stem Cells (PD/59/2013), (PD/BD/128087/2016) (COVID/BD/151599/2020) and by the project Cells4_IDs (PTDC/BTM-SAL/28882/2017)

    Active natural-based films for food packaging applications: the combined effect of chitosan and nanocellulose

    Get PDF
    This work aimed to evaluate the potential of chitosan/cellulose nanocrystals (CNC) films to be used as active pads for meat packages to prolong its shelf-life and preserve its properties over time. Several CNC concentrations (5, 10, 25, and 50wt%) were tested and the films were produced by solvent casting. The developed samples were characterized by ATR-FTIR, TGA, FESEM, and XRD. The transparency, antimicrobial, barrier and mechanical properties were also assessed. Finally, the films' ability to prolong food shelf-life was studied in real conditions using chicken meat. CNC incorporation improved the thermal stability and the oxygen barrier while the water vapor permeability was maintained. An enhancement of mechanical properties was also observed by the increase in tensile strength and Young's modulus in chitosan/CNC films. These films demonstrated bactericidal effect against Gram-positive and Gram-negative bacteria and fungicidal activity against Candida albicans. Lastly, chitosan-based films decreased the growth of Pseudomonas and Enterobacteriaceae bacteria in meat during the first days of storage compared to commercial membranes, while chitosan/CNC films reduced the total volatile basic nitrogen (TVB-N), indicating their efficiency in retarding meat's spoilage under refrigeration conditions. This work highlights the great potential of natural-based films to act as green alternatives for food preservation.The authors are thankful to project UID/CTM/00264/2019 of 2C2T - Centro de Ciencia e Tecnologia Textil, funded by National Founds through FCT/MCTES-Fundacao para a Ciencia e a Tecnologia. Sofia M. Costa is thankful to FCT PhD Scholarship (SFRH/BD/147517/2019). Diana Ferreira is thankful to CEECIND/02803/2017. The authors are also thankful for the financial support of the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte operation (NORTE-010145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 -Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Biomimetic surface topography as a potential modulator of macrophages inflammatory response to biomaterials

    Get PDF
    The implantation of biomaterial devices can negatively impact the local microenvironment through several processes including the injury incurred during the implantation process and the associated host inflammatory response. Immune cell responses to implantable biomaterial devices mediate host-material interactions. Indeed, the immune system plays a central role in several biological processes required for the integration of biomaterials such as wound healing, tissue integration, inflammation, and foreign body reactions. The implant physicochemical properties such as size, shape, surface area, topography, and chemistry have been shown to provide cues to the immune system. Its induced immune-modulatory responses towards inflammatory or wound healing phenotypes can determine the success of the implant. In this work, we aim to evaluate the impact of some biomimetic surface topographies on macrophages' acute inflammatory response. For that, we selected 4 different biological surfaces to replicate through soft lithography on spin casting PCL membranes. Those topographies were: the surface of E. coli, S.eppidermidis and L929 cells cultured in polystyrene tissue culture disks, and an Eggshell membrane. We selected a model based on THP-1-derived macrophages to study the analysis of the expression of both pro-inflammatory and anti-inflammatory markers. Our results revealed that depending on the surface where these cells are seeded, they present different phenotypes. Macrophages present a M1-like phenotype when they are cultured on top of PCL membranes with the surface topography of E. coli and S. epidermidis. When cultured on membranes with L929 monolayers or Eggshell membrane surface topography, the macrophages present a M2-like phenotype. These results can be a significant advance in the development of new implantable biomaterial devices since they can help to modulate the inflammatory responses to implanted biomaterials by controlling their surface topography.FCT -Fundação para a Ciência e a Tecnologia(PD/59/2013

    Composition, potential emissions and agricultural value of pig slurry from Spanish commercial farms

    Full text link
    [EN] Pig slurry is a valuable fertilizer for crop production but at the same time its management may pose environmental risks. Slurry samples were collected from 77 commercial farms of four animal categories (gestating and lactating sows, nursery piglets and growing pigs) and analyzed for macronutrients, micronutrients, heavy metals and volatile fatty acids. Emissions of ammonia (NH3) and biochemical methane potential (BMP) were quantified. Slurry electrical conductivity, pH, dry matter content and ash content were also determined. Data analysis included an analysis of correlations among variables, the development of predictionmodels for gaseousemissions and the analysis of nutritional content of slurries for crop production. Descriptive information is provided in this work and shows a wide range of variability in all studied variables. Animal category affected some physicochemical parameters, probably as a consequence of different slurry management and use of cleaning water. Slurries from gestating sows and growing pigs tended to be more concentrated in nutrients, whereas the slurry from lactating sows and nursery piglets tended to be more diluted. Relevant relationships were found among slurry characteristics expressed in fresh basis and gas emissions. Predictivemodels using on-farmmeasurable parameterswere obtained forNH3 (R2 = 0.51) andCH4 (R2 = 0.76), which suggests that BMP may be estimated in commercial farms from easily determined slurry characteristics. Finally, slurry nutrient composition was highly variable. Therefore, complete analyses of slurries should be performed for an effective and environmental friendly land application.This project was funded by the Spanish Ministry of Science and Innovation (AGL2011-30023) and the Valencian Government (ACOMP/2013/118). We thank the BABEL Project, Building Academic Bonds between Europe and Latin America. Erasmus Mundus Programme Action 2 for PhD fellowships. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain.Antezana-Julian, WO.; Blas, CD.; García-Rebollar, P.; Rodríguez, C.; Beccaccia, A.; Ferrer Riera, P.; Cerisuelo, A.... (2016). Composition, potential emissions and agricultural value of pig slurry from Spanish commercial farms. Nutrient Cycling in Agroecosystems. 104(2):159-173. https://doi.org/10.1007/s10705-016-9764-3S1591731042Aarnink AJA, Verstegen MWA (2007) Nutrition, key factor to reduce environmental load from pig production. Livest Sci 109(1–3):194–203Abubaker J, Risberg K, Jönsson E, Dahlin A S, Cederlund H, Pell M (2015) Short-term effects of biogas digestates and pig slurry application on soil microbial activity. Appl Environ Soil Sci. Article ID 658542: 1–15Adekunle KF, Okolie JA (2015) A review of biochemical process of anaerobic digestion. Adv Biosci Biotechnol 6:205–212Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy J, Kalyuzhnyi S, Jenicek P, Van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934Antezana W, Calvet S, Beccaccia A, Ferrer P, De Blas C, García-Rebollar P, Cerisuelo A (2015) Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: III. Influence of varying the dietary level of calcium soap of palm fatty acids distillate with or without orange pulp supplementation. Anim Feed Sci Technol 209:128–136APHA (2005) Standard methods for the examination of water and wastewater. Centennial, BaltimoreBai ZH, Qin W, Chen Q, Oenema O, Zhang FS (2014) Changes in pig production in china and their effects on nitrogen and phosphorus use and losses. Environ Sci Technol 48:12742–12749Beccaccia A, Ferrer P, Ibáñez MA, Estellés F, Rodríguez C, Moset V, De Blas C, Calvet S, García-rebollar P (2015) Relationships among slurry characteristics and gaseous emissions at different types of commercial spanish pig farms. Span J Agric Res 13(1):1–15Conn KL, Topp E, Lazarovits G (2007) Factors influencing the concentration of volatile fatty acids, ammonia, and other nutrients in stored liquid pig manure. J Environ Qual 36(2):440–447Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility. A review. Agron Sustain Dev 30:401–422. doi: 10.1051/agro/2009040Díez JA, Hernaiz P, Muñoz MJ, Torre A, Vallejo A (2006) Impact of pig slurry on soil properties, water salinization, nitrate leaching and crop yield in a four-year experiment in Central Spain. Soil Use Manag 20(4):444–450Dourmad J-Y, Jondreville C (2007) Impact of nutrition on nitrogen, phosphorus, Cu and Zn in pig manure, and on emissions of ammonia and odours. Livest Sci 112(3):192–198EUROSTAT (2015) Pig farming sector—statistical portrait. Pig Farming in the European Union: considerable variations from one member state to another. Statistics in Focus 15/2014. Author: Pol Marquer, Teresa Rabade, Roberta Forti ISSN:2314-9647, Catalogue number: KS-SF-14-015-EN-NFangueiro D, Lopes C, Surgy S, Vasconcelos E (2012a) Effect of the pig slurry separation techniques on the characteristics and potential availability of N to plants in the resulting liquid and solid fractions. Biosyst Eng 113(2):187–194Fangueiro D, Ribeiro H, Vasconcelos E, Coutinho J, Cabral F (2012b) Influence of animal slurries composition and relative particle size fractions on the C and N mineralization following soil incorporation. Biomass Bioenergy 47:50–51Ferrer P, Cambra-López M, Cerisuelo A, Peñaranda D, Moset V (2014) The use of agricultural substrates to improve methane yield in anaerobic co-digestion with pig slurry: effect of substrate type and inclusion level. Waste Manag 34:196–203Galassi G, Colombini S, Malagutti L, Crovetto GM, Rapetti L (2010) Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Anim Feed Sci Technol 161:3–4Gopalan P, Jensen PD, Batstone DJ (2013) Anaerobic digestion of swine effluent: impact of production stages. Biomass Bioenergy 48:121–129Hernández D, Fernández JM, Plaza C, Polo A (2007) Water-soluble organic matter and biological activity of a degraded soil amended with pig slurry. Sci Total Environ 378:101–103Hernández D, Polo A, Plaza C (2013) Long-term effects of pig slurry on barley yield and N use efficiency under semiarid mediterranean conditions. Eur J Agron 44:47–86Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz A, Dell C, Adesogan A, Yang W, Tricarico J, Kebreab E, Waghorn G, Dijkstra J, Oosting S (2013) Mitigation of greenhouse gas emissions in livestock production—A review of technical options for non-CO2 emissions. In: Gerber PJ, Henderson B, Makkar HPS (eds) FAO Animal Production and Health Paper No. 177. FAO, RomeIguácel F, Yagüe MR, Betrán J, Orús F (2011) Ensayos de Fertilización Con Purín Porcino, En Cereales de Invierno de Secano, Dirección General de Desarrollo Rural, Centro de Transferencia Agroalimentaria, Gobierno de Aragón. Informe Técnico 226:15Jarret G, Cerisuelo A, Peu P, Martinez J, Dourmad JY (2012) Impact of pig diets with different fibre contents on the composition of excreta and their gaseous emissions and anaerobic digestion. Agric Ecosyst Environ 160:51–58Jouany JP (1982) Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci Alimen 2:131–144Krupa SV (2003) Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ Pollut 124(2):179–221Mantovi P, Fumagalli L, Beretta GP, Guermandi M (2006) Nitrate leaching through the unsaturated zone following pig slurry applications. J Hydrol 316:1–4Martínez-Suller L, Azzellino A, Provolo G (2008) Analysis of livestock slurries from farms across Northern Italy: relationship between indicators and nutrient content. Biosyst Eng 99(4):540–552Moral R, Moreno-Caselles J, Perez-Murcia MD, Perez-Espinosa A, Rufete B, Paredes C (2005a) Characterisation of the organic matter pool in manures. Bioresour Technol 96(2):153–158Moral R, Perez-Murcia MD, Perez-Espinosa A, Moreno-Caselles J, Paredes C (2005b) Estimation of nutrient values of pig slurries in Southeast Spain using easily determined properties. Waste Manag 25(7):719–725Moral R, Perez-Murcia MD, Perez-Espinosa A, Moreno-Caselles J, Paredes C, Rufete B (2008) Salinity, organic content, micronutrients and heavy metals in pig slurries from South-Eastern Spain. Waste Manag 28(2):367–371Morazán H, Alvarez-Rodriguez J, Seradj AR, Balcells J, Babot D (2015) Trade-offs among growth performance, nutrient digestion and carcass traits when feeding low protein and/or high neutral-detergent fiber diets to growing-finishing pigs. Anim Feed Sci Technol 207:168–180Moset V, Cambra-López M, Estellés F, Torres AG, Cerisuelo A (2012) Evolution of chemical composition and gas emissions from aged pig slurry during outdoor storage with and without prior solid separation. Biosyst Eng 111(1):2–10Ndegwa PM, Vaddella VK, Hristov N, Joo HS (2009) Measuring concentrations of ammonia in ambient air or exhaust air stream using acid traps.  J Environ Qual 38(2):647–653Nicholson FA, Chambers BJ, Williams JR, Unwin RJ (1999) Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Technol 70(1):23–31Olusegun OS (2014) Influence of NPK 15-15-15 Fertilizer and Pig Manure on Nutrient Dynamics and Production of Cowpea, Vigna unguiculata L. Walp. Am J Agric For 2(6):267Parera i Pous J, Olivé D, Mallol Nabot C, Torrijos NC (2010) Adaptación Del Uso de La Conductividad Eléctrica (CE) Para Determinar de Forma Rápida El Contenido En Nutrientes Del Purín Porcino En Catalunya. International Workshop on Anaerobic Digestion of Slaughterhouse Waste, pp 67–76Patience JF, Gould SA, Koehler D, Corrigan B, Elsbernd A, Holloway CL (2015) Super-dosed phytase improves rate and efficiency of gain in nursery pigs. Anim Ind Rep AS 661:98Penha HG, Menezes JF, Silva CA, Lopes G, Carvalho CA, Ramos SJ, Guilherme LRG (2015) Nutrient accumulation and availability and crop yields following long-term application of pig slurry in a Brazilian Cerrado soil. Nutr Cycl Agroecosyst 101(2):259–269Popovic O, Jensen LS (2012) Storage temperature affects distribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction. Water Res 46(12):3849–3858Provolo G, Martínez-Suller L (2007) In situ determination of slurry nutrient content by electrical conductivity. Bioresour Technol 98(17):3235–3242Sánchez M, González JL (2005) The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresour Technol 96(10):1117–1123SAS Institute (2008) SAS/STAT User´s guide, v 9.3. SAS Institute Inc., CarySchoumans OF, Chardon WJ, Bechmann ME, Gascuel-Odoux C, Hofman G, Kronvang B, Rubæk HG, Ulén B, Dorioz JM (2014) Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Sci Total Environ 468–469:1255–1266Schröder JJ, Cordell D, Smit AL, Rosemarin A (2010) Sustainable use of phosphorus. Plant Research International Wageningen UR. Report 357Scotford IM, Cumby TR, White RP, Carton OT, Lorenz F, Hatterman U, Provolo G (1998) Estimation of the nutrient value of agricultural slurries by measurement of physical and chemical properties. J Agric Eng Res 71(3):291–305Snoek DJW, Johannes DS, Ogink NWM, Koerkamp PWGG (2014) Sensitivity analysis of mechanistic models for estimating ammonia emission from dairy cow urine puddles. Biosyst Eng 121:12–24Suresh A, Choi HL, Oh DI, Moon OK (2009) Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC—electrical conductivity. Bioresour Technol 100:4683–4689Thygesen O, Triolo JM, Sommer SG (2012) Indicators of physical properties and plant nutrient content of animal slurry and separated slurry. Biol Eng Trans 5(3):123–135Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Jiang XY (2011) A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour Technol 102:9395–9402Van Duivenbooden N, de Wit CT, Van Keulen H (1996) Nitrogen, phosphorus and potassium relations in five major cereals reviewed in respect to fertilizer recommendations using simulation modelling. Fertil Res Wagening 44:37–49Viguria M, Sanz-Cobeña A, López DM, Arriaga H, Merino P (2015) Ammonia and greenhouse gases emission from impermeable covered storage and land application of cattle slurry to bare soil. Agric Ecosyst Environ 199:261–271Villamar CA, Canuta T, Belmonte M, Vidal G (2012) Characterization of swine wastewater by toxicity identification evaluation methodology (TIE). Water Air Soil Pollut 223(1):363–369Villamar CA, Rodríguez DC, López D, Peñuela G, Vidal G (2013) Effect of the generation and physical–chemical characterization of swine and dairy cattle slurries on treatment technologies. Waste Manage Res 31(8):820–828Villar MC, Petrikova V, Díaz-Raviña M, Carballas T (2004) Recycling of organic wastes in burnt soils: combined application of poultry manure and plant cultivation. Waste Manage 24(4):365–370Webb J, Menzi H, Pain BF, Misselbrook TH, Dämmgen U, Hendriks H, Döhler H (2005) Managing ammonia emissions from livestock production in Europe. Environ Pollut 135:399–406Webb J, Broomfield M, Jones S, Donovan B (2014) Ammonia and odour emissions from UK pig farms and nitrogen leaching from outdoor pig production. Sci Total Environ 470:865–875Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860Yagüe MR, Bosch-Serra AD, Boixadera J (2012) Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: usefulness and constraints. Biosyst Eng 111(2):206–216Zhang W, Wei Q, Wu S, Qi D, Li W, Zuo Z, Dong R (2014) Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl Energy 128:175–18
    • …
    corecore