Impact of cattle-slurry treatment by separation and acidification on gaseous emissions after soil application

D. Fangueiro¹, J. Pereira^{2,3}, A. Bichana¹, S. Surgy¹, F. Cabral¹, J. Coutinho⁴
¹ LEAF, Instituto Superior de Agronomia, Univ. Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
² CI&DETS, ESA de Viseu, Instituto Politécnico de Viseu, Portugal;
³ CITAB, Universidade de Trás-os-Montes e Alto Douro, Portugal;
⁴ Centro de Química, Universidade de Trás-os-Montes e Alto Douro, Portugal
dfangueiro@isa.ulisboa.pt

Background

Objectives

Assess the efficiency of cattle slurry treatment by acidification and/or solid liquid separation to mitigate ammonia (NH₃) and

Application of liquid fraction	
obtained by slur	ry separation

Application of acidified slurry

Efficient to decrease NH₃ but what's about N₂O, CH₄ and CO₂ emissions?

increase the fertilizer value of slurry

minimize its environmental impact.

greenhouse gases (GHG)

emissions following application to

soil.

Laboratory Experiment

> Cattle-slurry treatment

prior application to soil

✓ Raw cattle slurry (S), S acidified at pH 5.5 (AS), liquid fraction obtained by centrifugation (LF) and acidified LF (pH 5.5) applied to a sandy loam soil (80 mg N kg⁻¹ dry soil) and aerobically incubated during 92 days at 25 °C in 2 L kilner jars;
 ✓ 2 independent incubations: one to follow NH₃ emissions using acid traps, one to follow GHG emissions using the closed chamber technique.

Treatments considered

- 1. Soil only (Control);
- Band application of S followed by soil incorporation (S-I);
- 3. Band application of S (S-S);
- 4. Band application of AS (AS-S);
- 5. Band application of LF (LF-S);
- 6. Band application of ALF (**ALF-S**).

Cumulated CH₄ emissions 1.4 a 1.2 a 1.2 a

Cumulated CO₂ emissions

More information

Cumulated NH₃ emissions

> Application of acidified slurry: good solution to decrease GWP relative to raw slurry (minimize NH_3 , N_2O and CH_4 emissions);

> LF application: significant decrease of NH_3 emissions relative to S but has no impact on N_2O emissions. But acidification of LF has no positive impact on gaseous emissions.

Fundação para a Ciência e a Tecnologia (FCT) financially supported this research through the projects "Animal slurry management: sustainable practices at field scale" (PTDC/AGR-PRO/119428/2010) and (ProjectPEst-OE/AGR/UI0528/2011) and a grant to David Fangueiro (SFRH/BPD/84229/2012).