4,657 research outputs found

    Analysis of stresses at the bore of a drilled ball operating in a high-speed bearing

    Get PDF
    Three-dimensional stress distributions were calculated for both a regular drilled ball with a stiffening web. The balls were 20.6 mm (0.8125 in.) in diameter and had a 12.6 mm (0.496 in.) diameter concentric hole. The stiffening web was 1.5 mm (0.06 in.) thick. The calculations showed that a large reversing tangential stress at the hole bore was reduced by one-half by the addition of the web

    Solvable senescence model with positive mutations

    Full text link
    We build upon our previous analytical results for the Penna model of senescence to include positive mutations. We investigate whether a small but non-zero positive mutation rate gives qualitatively different results to the traditional Penna model in which no positive mutations are considered. We find that the high-lifespan tail of the distribution is radically changed in structure, but that there is not much effect on the bulk of the population. Th e mortality plateau that we found previously for a stochastic generalization of the Penna model is stable to a small positive mutation rate.Comment: 3 figure

    Influence of tectonic folding on rockfall susceptibility, American Fork Canyon, Utah, USA

    Get PDF
    International audienceWe examine rockfall susceptibility of folded strata in the Sevier fold-thrust belt exposed in American Fork Canyon in north-central Utah. Large-scale geologic mapping, talus production data, rock-mass-quality measurements, and historical rockfall data indicate that rockfall susceptibility is correlated with limb dip and curvature of the folded, cliff-forming Mississippian limestones. On fold limbs, rockfall susceptibility increases as dip increases. This relation is controlled by several factors, including an increase in adverse dip conditions and apertures of discontinuities, and shearing by flexural slip during folding that has reduced the friction angles of discontinuities by smoothing surface asperities. Susceptibility is greater in fold hinge zones than on adjacent limbs primarily because there are greater numbers of discontinuities in hinge zones. We speculate that susceptibility increases in hinge zones as fold curvature becomes tighter

    Discovery of Radio Emission from Transient Anomalous X-ray Pulsar XTE J1810-197

    Get PDF
    We report the first detection of radio emission from any anomalous X-ray pulsar (AXP). Data from the Very Large Array (VLA) MAGPIS survey with angular resolution 6" reveals a point-source of flux density 4.5 +/- 0.5 mJy at 1.4 GHz at the precise location of the 5.54 s pulsar XTE J1810-197. This is greater than upper limits from all other AXPs and from quiescent states of soft gamma-ray repeaters (SGRs). The detection was made in 2004 January, 1 year after the discovery of XTE J1810-197 during its only known outburst. Additional VLA observations both before and after the outburst yield only upper limits that are comparable to or larger than the single detection, neither supporting nor ruling out a decaying radio afterglow related to the X-ray turn-on. Another hypothesis is that, unlike the other AXPs and SGRs, XTE J1810-197 may power a radio synchrotron nebula by the interaction of its particle wind with a moderately dense environment that was not evacuated by previous activity from this least luminous, in X-rays, of the known magnetars.Comment: 13 pages, 1 figure, to appear in ApJ Letter

    Monitoring and Discovering X-ray Pulsars in the Small Magellanic Cloud

    Full text link
    Regular monitoring of the SMC with RXTE has revealed a huge number of X-ray pulsars. Together with discoveries from other satellites at least 45 SMC pulsars are now known. One of these sources, a pulsar with a period of approximately 7.8 seconds, was first detected in early 2002 and since discovery it has been found to be in outburst nine times. The outburst pattern clearly shows a period of 45.1 +/- 0.4 d which is thought to be the orbital period of this system. Candidate outburst periods have also been obtained for nine other pulsars and continued monitoring will enable us to confirm these. This large number of pulsars, all located at approximately the same distance, enables a wealth of comparative studies. In addition, the large number of pulsars found (which vastly exceeds the number expected simply by scaling the relative mass of the SMC and the Galaxy) reveals the recent star formation history of the SMC which has been influenced by encounters with both the LMC and the Galaxy.Comment: 5 pages, 4 figures, AIP conference proceedings format. Contribution to "X-ray Timing 2003: Rossi and Beyond." meeting held in Cambridge, MA, November, 200

    SXP 7.92: A Recently Rediscovered Be/X-ray Binary in the Small Magellanic Cloud, Viewed Edge On

    Get PDF
    We present a detailed optical and X-ray study of the 2013 outburst of the Small Magellanic Cloud Be/X-ray binary SXP 7.92, as well as an overview of the last 18 years of observations from OGLE (Optical Gravitational Lensing Experiment), RXTE, Chandra and XMM-Newton. We revise the position of this source to RA(J2000) = 00:57:58.4, Dec(J2000) = −72:22:29.5 with a 1σ uncertainty of 1.5 arcsec, correcting the previously reported position by Coe et al. by more than 20 arcmin. We identify and spectrally classify the correct counterpart as a B1Ve star. The optical spectrum is distinguished by an uncharacteristically deep narrow Balmer series, with the Hα line in particular having a distinctive shell profile, i.e. a deep absorption core embedded in an emission line. We interpret this as evidence that we are viewing the system edge on and are seeing self-obscuration of the circumstellar disc. We derive an optical period for the system of 40.0 ± 0.3 d, which we interpret as the orbital period, and present several mechanisms to describe the X-ray/optical behaviour in the recent outburst, in particular the ‘flares'and ‘dips’ seen in the optical light curve, including a transient accretion disc and an elongated precessing disc

    Swift J053041.9-665426, a new Be/X-ray binary pulsar in the Large Magellanic Cloud

    Full text link
    We observed the newly discovered X-ray source Swift J053041.9-665426 in the X-ray and optical regime to confirm its proposed nature as a high mass X-ray binary. We obtained XMM-Newton and Swift X-ray data, along with optical observations with the ESO Faint Object Spectrograph, to investigate the spectral and temporal characteristics of Swift J053041.9-665426. The XMM-Newton data show coherent X-ray pulsations with a period of 28.77521(10) s (1 sigma). The X-ray spectrum can be modelled by an absorbed power law with photon index within the range 0.76 to 0.87. The addition of a black body component increases the quality of the fit but also leads to strong dependences of the photon index, black-body temperature and absorption column density. We identified the only optical counterpart within the error circle of XMM-Newton at an angular distance of ~0.8 arcsec, which is 2MASS J05304215-6654303. We performed optical spectroscopy from which we classify the companion as a B0-1.5Ve star. The X-ray pulsations and long-term variability, as well as the properties of the optical counterpart, confirm that Swift J053041.9-665426 is a new Be/X-ray binary pulsar in the Large Magellanic Cloud.Comment: 10 pages, 8 figures, accepted for publication in A&

    X-ray observations of AM Herculis from OSO-8

    Get PDF
    The white dwarf binary system AM Herculis (2A1815+500) was observed in X-rays at both low energies (E less 10 keV) and higher energies. The exact shape of the spectrum, particularly at the higher energies, has yet to be determined. Results from the high energy scintillation spectrometer on OSO-8 are presented. These are combined with results published elsewhere obtained concurrently with the proportional counter on the same satellite, thereby giving for the first time coincident observations of AM Her over the range 2 to 250 keV

    The Orbital Solution and Spectral Classification of the High-Mass X-Ray Binary IGR J01054-7253 in the Small Magellanic Cloud

    Full text link
    We present X-ray and optical data on the Be/X-ray binary (BeXRB) pulsar IGR J01054-7253 = SXP11.5 in the Small Magellanic Cloud (SMC). Rossi X-ray Timing Explorer (RXTE) observations of this source in a large X-ray outburst reveal an 11.483 +/- 0.002s pulse period and show both the accretion driven spin-up of the neutron star and the motion of the neutron star around the companion through Doppler shifting of the spin period. Model fits to these data suggest an orbital period of 36.3 +/- 0.4d and Pdot of (4.7 +/- 0.3) x 10^{-10} ss^{-1}. We present an orbital solution for this system, making it one of the best described BeXRB systems in the SMC. The observed pulse period, spin-up and X-ray luminosity of SXP11.5 in this outburst are found to agree with the predictions of neutron star accretion theory. Timing analysis of the long-term optical light curve reveals a periodicity of 36.70 +/- 0.03d, in agreement with the orbital period found from the model fit to the X-ray data. Using blue-end spectroscopic observations we determine the spectral type of the counterpart to be O9.5-B0 IV-V. This luminosity class is supported by the observed V-band magnitude. Using optical and near-infrared photometry and spectroscopy, we study the circumstellar environment of the counterpart in the months after the X-ray outburst.Comment: 12 pages, 13 figures and 3 tables. This paper has been accepted for publication in MNRA
    corecore