868 research outputs found

    Weight, volume, and center of mass of segments of the human body

    Get PDF
    Weight, volume, and center of mass of segments of human bod

    Is Quantum Mechanics Compatible with a Deterministic Universe? Two Interpretations of Quantum Probabilities

    Get PDF
    Two problems will be considered: the question of hidden parameters and the problem of Kolmogorovity of quantum probabilities. Both of them will be analyzed from the point of view of two distinct understandings of quantum mechanical probabilities. Our analysis will be focused, as a particular example, on the Aspect-type EPR experiment. It will be shown that the quantum mechanical probabilities appearing in this experiment can be consistently understood as conditional probabilities without any paradoxical consequences. Therefore, nothing implies in the Aspect experiment that quantum theory is incompatible with a deterministic universe.Comment: REVISED VERSION! ONLY SMALL CHANGES IN THE TEXT! compressed and uuencoded postscript, a uuencoded version of a demo program file (epr.exe for DOS) is attached as a "Figure

    General criterion for the entanglement of two indistinguishable particles

    Full text link
    We relate the notion of entanglement for quantum systems composed of two identical constituents to the impossibility of attributing a complete set of properties to both particles. This implies definite constraints on the mathematical form of the state vector associated with the whole system. We then analyze separately the cases of fermion and boson systems, and we show how the consideration of both the Slater-Schmidt number of the fermionic and bosonic analog of the Schmidt decomposition of the global state vector and the von Neumann entropy of the one-particle reduced density operators can supply us with a consistent criterion for detecting entanglement. In particular, the consideration of the von Neumann entropy is particularly useful in deciding whether the correlations of the considered states are simply due to the indistinguishability of the particles involved or are a genuine manifestation of the entanglement. The treatment leads to a full clarification of the subtle aspects of entanglement of two identical constituents which have been a source of embarrassment and of serious misunderstandings in the recent literature.Comment: 18 pages, Latex; revised version: Section 3.2 rewritten, new Theorems added, reference [1] corrected. To appear on Phys.Rev.A 70, (2004

    Entropy inequalities and Bell inequalities for two-qubit systems

    Get PDF
    Sufficient conditions for (the non-violation of) the Bell-CHSH inequalities in a mixed state of a two-qubit system are: 1) The linear entropy of the state is not smaller than 0.5, 2) The sum of the conditional linear entropies is non-negative, 3) The von Neumann entropy is not smaller than 0.833, 4) The sum of the conditional von Neumann entropies is not smaller than 0.280.Comment: Errors corrected. See L. Jakobcyk, quant-ph/040908

    Atomic vapor-based high efficiency optical detectors with photon number resolution

    Full text link
    We propose a novel approach to the important fundamental problem of detecting weak optical fields at the few photon level. The ability to detect with high efficiency (>99%), and to distinguish the number of photons in a given time interval is a very challenging technical problem with enormous potential pay-offs in quantum communications and information processing. Our proposal diverges from standard solid-state photo-detector technology by employing an atomic vapor as the active medium, prepared in a specific quantum state using laser radiation. The absorption of a photon will be aided by a dressing laser, and the presence or absence of an excited atom will be detected using the ``cycling transition'' approach perfected for ion traps. By first incorporating an appropriate upconversion scheme, our method can be applied to a wide variety of optical wavelengths.Comment: 4 pages, 2 figure

    Comment on "Nonlocality of a Single Photon"

    Get PDF
    A Comment on the Letter by S. M. Tan, D. F. Walls, and M. J. Collett, Phys. Rev. Lett. 66, 252 (1991)

    Proof of Kolmogorovian Censorship

    Get PDF
    Many argued (Accardi and Fedullo, Pitowsky) that Kolmogorov's axioms of classical probability theory are incompatible with quantum probabilities, and this is the reason for the violation of Bell's inequalities. Szab\'o showed that, in fact, these inequalities are not violated by the experimentally observed frequencies if we consider the real, ``effective'' frequencies. We prove in this work a theorem which generalizes this result: ``effective'' frequencies associated to quantum events always admit a Kolmogorovian representation, when these events are collected through different experimental set ups, the choice of which obeys a classical distribution.Comment: 19 pages, LaTe

    New optimal tests of quantum nonlocality

    Full text link
    We explore correlation polytopes to derive a set of all Boole-Bell type conditions of possible classical experience which are both maximal and complete. These are compared with the respective quantum expressions for the Greenberger-Horne-Zeilinger (GHZ) case and for two particles with spin state measurements along three directions.Comment: 10 page

    Non-Contextual Hidden Variables and Physical Measurements

    Full text link
    For a hidden variable theory to be indistinguishable from quantum theory for finite precision measurements, it is enough that its predictions agree for some measurement within the range of precision. Meyer has recently pointed out that the Kochen-Specker theorem, which demonstrates the impossibility of a deterministic hidden variable description of ideal spin measurements on a spin 1 particle, can thus be effectively nullified if only finite precision measurements are considered. We generalise this result: it is possible to ascribe consistent outcomes to a dense subset of the set of projection valued measurements, or to a dense subset of the set of positive operator valued measurements, on any finite dimensional system. Hence no Kochen-Specker like contradiction can rule out hidden variable theories indistinguishable from quantum theory by finite precision measurements in either class.Comment: Typo corrected. Final version: to appear in Phys. Rev. Let

    Jamming non-local quantum correlations

    Get PDF
    We present a possible scheme to tamper with non-local quantum correlations in a way that is consistent with relativistic causality, but goes beyond quantum mechanics. A non-local ``jamming" mechanism, operating within a certain space-time window, would not violate relativistic causality and would not lead to contradictory causal loops. The results presented in this Letter do not depend on any model of how quantum correlations arise and apply to any jamming mechanism.Comment: 10 pp, LaTe
    • …
    corecore