21 research outputs found

    Characterizing the γ-ray long-term variability of PKS 2155 - 304 with H.E.S.S. and Fermi-LAT

    Full text link
    Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV 200 GeV) γ-ray domain. Over the course of ∼9 yr of H.E.S.S. observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index βVHE = 1.10-0.13+0.10) on timescales larger than one day. An analysis of ∼5.5 yr of HE Fermi-LAT data gives consistent results (βHE = 1.20-0.23+0.21), on timescales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior (β ∼ 2) seen on shorter timescales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection

    HESS upper limits for Kepler's supernova remnant

    Get PDF
    Aims. Observations of Kepler's supernova remnant (G4.5+6.8) with the HESS telescope array in 2004 and 2005 with a total live time of 13 h are presented. Methods. Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the energy and direction of the incident gamma rays. Results. No evidence for a very high energy (VHE: >100 GeV) gamma-ray signal from the direction of the remnant is found. An upper limit (99% confidence level) on the energy flux in the range 230 GeV12.8 TeV230~{\rm GeV}{-}12.8~{\rm TeV} of 8.6 ×\times 1013 erg cm2 s110^{-13}~{\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1} is obtained. Conclusions. In the context of an existing theoretical model for the remnant, the lack of a detectable gamma-ray flux implies a distance of at least 6.4 kpc6.4~{\rm kpc}. A corresponding upper limit for the density of the ambient matter of 0.7 cm30.7~{\rm cm}^{-3} is derived. With this distance limit, and assuming a spectral index Γ=2\Gamma = 2, the total energy in accelerated protons is limited to Ep<8.6E_{\rm p} < 8.6 ×\times 1049 erg10^{49}~{\rm erg}. In the synchrotron/inverse Compton framework, extrapolating the power law measured by RXTE between 10 and 20 keV20~{\rm keV} down in energy, the predicted gamma-ray flux from inverse Compton scattering is below the measured upper limit for magnetic field values greater than 52 μG52~\mu {\rm G}

    Exploring a SNR/molecular cloud association within HESS J1745-303

    Get PDF
    Aims. HESS J1745-303 is an extended, unidentified VHE (very high energy) gamma-ray source discovered using HESS in the Galactic Plane Survey. Since no obvious counterpart has previously been found in longer-wavelength data, the processes that power the VHE emission are not well understood. Methods. Combining the latest VHE data with recent XMM-Newton observations and a variety of source catalogs and lower-energy survey data, we attempt to match (from an energetic and positional standpoint) the various parts of the emission of HESS J1745-303 with possible candidates. Results. Though no single counterpart is found to fully explain the VHE emission, we postulate that at least a fraction of the VHE source may be explained by a supernova-remnant/molecular-cloud association and/or a high-spin-down-flux pulsar

    Discovery of a VHE gamma-ray source coincident with the supernova remnant CTB 37A

    Get PDF
    Aims. The supernova remnant (SNR) complex CTB 37 is an interesting candidate for observations with very high energy (VHE) γ\gamma-ray telescopes such as HESS. In this region, three SNRs are seen. One of them is potentially associated with several molecular clouds, a circumstance that can be used to probe the acceleration of hadronic cosmic rays. Methods. This region was observed with the HESS Cherenkov telescopes and the data were analyzed with standard HESS procedures. Recent X-ray observations with Chandra and XMM-Newton were used to search for X-ray counterparts. Results. The discovery of a new VHE γ\gamma-ray source HESS J1714-385 coincident with the remnant CTB 37A is reported. The energy spectrum is well described by a power-law with a photon index of Γ\Gamma = 2.30 ±\pm 0.13 and a differential flux at 1 TeV of Φ0=(8.7±1.0stat±1.8sys)×1013\Phi_0 = (8.7 \pm 1.0_{\mathrm{stat}} \pm 1.8_{\mathrm{sys}}) \times 10^{-13} cm-2 s-1 TeV-1. The integrated flux above 1 TeV is equivalent to 3% of the flux of the Crab nebula above the same energy. This VHE γ\gamma-ray source is a counterpart candidate for the unidentified EGRET source 3EG J1714-3857. The observed VHE emission is consistent with the molecular gas distribution around CTB 37A; a close match is expected in a hadronic scenario for γ\gamma-ray production. The X-ray observations reveal the presence of thermal X-rays from the NE part of the SNR. In the NW part of the remnant, an extended non-thermal X-ray source, CXOU J171419.8-383023, is discovered as well. Possible connections of the X-ray emission to the newly found VHE source are discussed

    HESS upper limits for Kepler's supernova remnant

    Get PDF
    Aims. Observations of Kepler's supernova remnant (G4.5+6.8) with the HESS telescope array in 2004 and 2005 with a total live time of 13 h are presented. Methods. Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the energy and direction of the incident gamma rays. Results. No evidence for a very high energy (VHE: >100 GeV) gamma-ray signal from the direction of the remnant is found. An upper limit (99% confidence level) on the energy flux in the range 230 GeV12.8 TeV230~{\rm GeV}{-}12.8~{\rm TeV} of 8.6 ×\times 1013 erg cm2 s110^{-13}~{\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1} is obtained. Conclusions. In the context of an existing theoretical model for the remnant, the lack of a detectable gamma-ray flux implies a distance of at least 6.4 kpc6.4~{\rm kpc}. A corresponding upper limit for the density of the ambient matter of 0.7 cm30.7~{\rm cm}^{-3} is derived. With this distance limit, and assuming a spectral index Γ=2\Gamma = 2, the total energy in accelerated protons is limited to Ep<8.6E_{\rm p} < 8.6 ×\times 1049 erg10^{49}~{\rm erg}. In the synchrotron/inverse Compton framework, extrapolating the power law measured by RXTE between 10 and 20 keV20~{\rm keV} down in energy, the predicted gamma-ray flux from inverse Compton scattering is below the measured upper limit for magnetic field values greater than 52 μG52~\mu {\rm G}

    Discovery of VHE γ-rays from the high-frequency-peaked BL Lacertae object RGB J0152+017

    Full text link
    Aims. The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; >100 GeV) γ\gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (HESS) experiment. Methods. We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the HESS array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nançay Radio Telescope. Results. A signal of 173 γ\gamma-ray photons corresponding to a statistical significance of 6.6σ\sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of Γ=2.95±0.36stat±0.20syst\Gamma=2.95\pm0.36_{\mathrm{stat}}\pm 0.20_{\mathrm{syst}}. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions. RGB J0152+017 is discovered as a source of VHE γ\gamma-rays by HESS The location of its synchrotron peak, as derived from the SED in Swift data, allows clear classification as a high-frequency-peaked BL Lac (HBL)

    Discovery of VHE γ-rays from the high-frequency-peaked BL Lacertae object RGB J0152+017

    Full text link
    Aims. The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; >100 GeV) γ\gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (HESS) experiment. Methods. We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the HESS array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nançay Radio Telescope. Results. A signal of 173 γ\gamma-ray photons corresponding to a statistical significance of 6.6σ\sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of Γ=2.95±0.36stat±0.20syst\Gamma=2.95\pm0.36_{\mathrm{stat}}\pm 0.20_{\mathrm{syst}}. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions. RGB J0152+017 is discovered as a source of VHE γ\gamma-rays by HESS The location of its synchrotron peak, as derived from the SED in Swift data, allows clear classification as a high-frequency-peaked BL Lac (HBL)

    Chandra and HESS observations of the supernova remnant CTB 37B

    Get PDF
    We discovered the >100 GeV γ\gamma-ray source, HESS J1713-381, apparently associated with the shell-type supernova remnant (SNR) CTB 37B, using HESS in 2006. In 2007 we performed X-ray follow-up observations with Chandra with the aim of identifying a synchrotron counterpart to the TeV source and/or thermal emission from the SNR shell. These new Chandra data, together with additional TeV data, allow us to investigate the nature of this object in much greater detail than was previously possible. The new X-ray data reveal thermal emission from a ~4' region in close proximity to the radio shell of CTB 37B. The temperature of this emission implies an age for the remnant of ~5000 years and an ambient gas density of ~0.5 cm-3. Both these estimates are considerably uncertain due to the asymmetry of the SNR and possible modifications of the kinematics due to efficient cosmic ray (CR) acceleration. A bright (\approx 7 ×\times 10-13 erg cm-2 s-1) and unresolved (<1\arcsec) source (CXOU J171405.7-381031), with a soft (Γ\Gamma\approx3.3) non-thermal spectrum is also detected in coincidence with the radio shell. Absorption indicates a column density consistent with the thermal emission from the shell, suggesting a genuine association rather than a chance alignment. The observed TeV morphology is consistent with an origin in the complete shell of CTB 37B. The lack of diffuse non-thermal X-ray emission suggests an origin of the γ\gamma-ray emission via the decay of neutral pions produced in interactions of protons and nuclei, rather than inverse Compton (IC) emission from relativistic electrons

    HESS observations and VLT spectroscopy of PG1553+113

    Get PDF
    Aims.The properties of the very high energy (VHE; E > 100 GeV) γ\gamma-ray emission from the high-frequency peaked BL Lac PG 1553+113 are investigated. An attempt is made to measure the currently unknown redshift of this object. Methods.VHE Observations of PG 1553+113 were made with the High Energy Stereoscopic System (HESS) in 2005 and 2006. H + K (1.45-2.45 μ\mum) spectroscopy of PG 1553+113 was performed in March 2006 with SINFONI, an integral field spectrometer of the ESO Very Large Telescope (VLT) in Chile. Results.A VHE signal, ~10 standard deviations, is detected by HESS during the 2 years of observations (24.8 h live time). The integral flux above 300 GeV is (4.6±0.6stat±0.9syst)(4.6 \pm 0.6_{\rm stat} \pm 0.9_{\rm syst}) ×\times 10-12 cm-2 s-1, corresponding to ~3.4% of the flux from the Crab Nebula above the same threshold. The time-averaged energy spectrum is measured from 225 GeV to ~1.3 TeV, and is characterized by a very soft power law (photon index of Γ=4.5±0.3stat±0.1syst\Gamma = 4.5 \pm 0.3_{\rm stat} \pm 0.1_{\rm syst}). No evidence for any flux or spectral variations is found on any sampled time scale within the VHE data. The redshift of PG 1553+113 could not be determined. Indeed, even though the measured SINFONI spectrum is the most sensitive ever reported for this object at near infrared wavelengths, and the sensitivity is comparable to the best spectroscopy at other wavelengths, no absorption or emission lines were found in the H+K spectrum presented here

    New constraints on the mid-IR EBL from the HESS discovery of VHE γ-rays from 1ES 0229+200

    Full text link
    Aims.To investigate the very high energy (VHE: >100 GeV) γ\gamma-ray emission from the high-frequency peaked BL Lac 1ES 0229+200. Methods.Observations of 1ES 0229+200 at energies above 580 GeV were performed with the High Energy Stereoscopic System (HESS) in 2005 and 2006. Results.1ES 0229+200 is discovered by HESS to be an emitter of VHE photons. A signal is detected at the 6.6σ\sigma level in the HESS observations (41.8 h live time). The integral flux above 580 GeV is (9.4±1.5stat±1.9syst)×1013(9.4\pm1.5_{\rm stat}\pm1.9_{\rm syst}) \times 10^{-13} cm-2 s-1, corresponding to ~1.8% of the flux observed from the Crab Nebula. The data show no evidence for significant variability on any time scale. The observed spectrum is characterized by a hard power law ( Γ=2.50±0.19stat±0.10syst\Gamma = 2.50\pm0.19_{\rm stat}\pm0.10_{\rm syst}) from 500 GeV to ~15 TeV. Conclusions.The high-energy range and hardness of the observed spectrum, coupled with the object's relatively large redshift ( z = 0.1396), enable the strongest constraints so far on the density of the Extragalactic Background Light (EBL) in the mid-infrared band. Assuming that the emitted spectrum is not harder than Γint1.5\Gamma_{\rm int} \approx 1.5, the HESS data support an EBL spectrum \propto λ1\lambda^{-1} and density close to the lower limit from source counts measured by Spitzer, confirming the previous indications from the HEGRA data of 1ES 1426+428 (z=0.129). Irrespective of the EBL models used, the intrinsic spectrum of 1ES 0229+200 is hard, thus locating the high-energy peak of its spectral energy distribution above a few TeV
    corecore