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ABSTRACT

Aims. Observations of Kepler’s supernova remnant (G4.5+6.8) with the HESS telescope array in 2004 and 2005 with a total live time of 13 h are
presented.
Methods. Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the energy and direction of the incident
gamma rays.
Results. No evidence for a very high energy (VHE: >100 GeV) gamma-ray signal from the direction of the remnant is found. An upper limit (99%
confidence level) on the energy flux in the range 230 GeV−12.8 TeV of 8.6 × 10−13 erg cm−2 s−1 is obtained.
Conclusions. In the context of an existing theoretical model for the remnant, the lack of a detectable gamma-ray flux implies a distance of at
least 6.4 kpc. A corresponding upper limit for the density of the ambient matter of 0.7 cm−3 is derived. With this distance limit, and assuming a
spectral index Γ = 2, the total energy in accelerated protons is limited to Ep < 8.6 × 1049 erg. In the synchrotron/inverse Compton framework,
extrapolating the power law measured by RXTE between 10 and 20 keV down in energy, the predicted gamma-ray flux from inverse Compton
scattering is below the measured upper limit for magnetic field values greater than 52 μG.

Key words. gamma rays: observations – ISM: supernova remnants – ISM: individual objects: Kepler’s SNR, SN1604, G4.5+6.8

1. Introduction

It is widely believed that the bulk of the Galactic cosmic rays
(CR) with energies up to at least several 100 TeV originates from
supernova explosions (see for example Drury et al. 1994). This
implies copious amounts of very high energy (VHE: >100 GeV)
nuclei and electrons in the shells of supernova remnants (SNRs).
These particles can produce VHE gamma rays in interactions
of nucleonic cosmic rays with ambient matter, via inverse
Compton (IC) scattering of VHE electrons off ambient photons,
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as well as from electron Bremsstrahlung on ambient mat-
ter. Therefore SNRs are promising targets for observations of
VHE gamma rays.

In October 1604 several astronomers, among them Johannes
Kepler, observed a “new star” which today is believed to have
been a bright supernova (SN) at the Galactic coordinates l =
4.5◦ and b = 6.8◦. The remnant of this supernova has since
been a target of observations covering the entire electromag-
netic spectrum. In the radio regime, Dickel et al. (1988) deter-
mined a mean angular size of ∼200′′ and a mean expansion law
R ∝ t0.50, where R is the radius and t is the time. However, the
expansion parameter x = Ṙt/R varies considerably around the
SNR shell, 0.35 < x < 0.65, possibly indicating spatial in-
homogenities in the circumstellar gas density. In a very recent
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paper by Vink (2008) these properties, and the general asym-
metry of the remnant, have been basically confirmed through
X-ray measurements. They also allowed the analysis of a high-
velocity synchrotron filament in the eastern part of the remnant
with x = 0.7.

In addition, the distance d to the SNR is still under de-
bate. Reynoso & Goss (1999) report on an HI absorption fea-
ture in VLA data and use the Galactic rotation model of
Fich et al. (1989) to calculate a lower limit d > (4.8 ± 1.4) kpc.
They also give an upper limit on the distance due to the lack
of absorption by an HI cloud at 6.4 kpc. The authors re-
mark that these values involve uncertainties because of the
proximity of Kepler’s SNR to the Galactic center. In contrast,
Sankrit et al. (2005) and subsequently Blair et al. (2007) have
given a lower source distance of d = 3.9(+1.9 − 0.9) kpc, from
an absolute shock velocity ∼1660 ± 120 km s−1 derived from the
Hα emission line width of a Balmer-dominated filament that is
located in the northwestern region. The line broadening, taken as
an indication of the downstream thermal gas temperature, was
used to determine the shock velocity. We shall return to this
question in the discussion section.

Finally, the type of the supernova is not undisputed. From
the reconstructed light curve Baade (1943) claimed that it was a
type Ia SN, but Doggett & Branch (1985) argued that the light
curve is also consistent with a type II-L. Smith et al. (1989)
and Kinugasa & Tsunemi (1999) observed a relative overabun-
dance of heavy elements that agrees with type Ia nucleosyn-
thesis models, while Decourchelle & Ballet (1994) saw more
evidence that Kepler’s SNR is the remnant of a core-collapse
SN. Its position, 500−750 pc above the Galactic plane, is
more consistent with a type Ia than a type II SN, as a SN
of the latter type is expected to be confined to the region
of high gas density found in the plane. However, in the case
of a core-collapse event this might be explained through the
model of a runaway star, as proposed by Bandiera (1987).
More recently, theoretical modeling of the detailed thermal
line spectra obtained with XMM (Cassam-Chenaï et al. 2004)
led Badenes et al. (2005) to the conclusion that the X-ray spec-
trum is best fit by a type Ia SN, a view also expressed by
Blair (2005). Most recently Reynolds et al. (2007) reported on
deep Chandra observations and argued from the high abundance
of iron and the very low abundance of oxygen that the progeni-
tor of Kepler’s SNR has been a type Ia SN. Therefore it appears
that the observational evidence is finally converging on a type Ia
event.

In this paper observations of Kepler’s SNR with the
HESS telescope array are described. An upper limit on
the integrated energy flux above 230 GeV is derived.
Combining this HESS result with the theoretical predictions of
Berezhko et al. (2006) suggests a lower limit on the distance,
close to the upper limit given by Reynoso & Goss (1999), if
Kepler’s SN is a priori assumed to be of type Ia.

2. HESS data and analysis

HESS is an array of four imaging atmospheric Cherenkov
telescopes situated in the Khomas Highland of Namibia
(Hinton 2004). Kepler’s SNR was observed with the entire tele-
scope array between May 2004 and July 2005 for a total ob-
servation time of 14 h. The observations were made in wob-
ble mode, where the tracking position is offset from the source
center (RA 17h30m42.12s, Dec −21◦28′59.9′′ J2000.0). Offsets
ranging from 0.40◦ to 0.85◦ were used. The data were taken at
zenith angles between 1◦ and 49◦, with a mean zenith angle

Right Ascension

D
ec

lin
at

io
n

15’°-22

00’°-22

45’°-21

30’°-21

15’°-21

00’°-21

45’°-20

30’°-20

-80

-60

-40

-20

0

20

40

60

80

100

G004.5+06.8

m28h17m30h17m32h17m34h17

Fig. 1. Left: sky map of excess events around the position of
Kepler’s SNR with oversampling radius 0.112◦; right: distribution of
the squared angular distance of gamma-ray-like events to the center
of the remnant (ON) and the center of three control regions (OFF) with
the same distance to the pointing position as the ON region. The vertical
dotted line denotes the standard selection cut for point sources used by
HESS.

of 13◦. After applying the standard HESS data-quality crite-
ria a total of ∼13 h live time were available for the analysis.
The analysis is performed using the standard analysis techniques
(Aharonian et al. 2004, 2005).

An event is counted as an ON-source event if its direction
is reconstructed within 0.112◦ from the direction of the source,
given that Kepler’s SNR is expected to be point-like for HESS1.
This is a reasonable assumption as the angular size of the rem-
nant in radio and X-rays wavelengths is 200′′(=0.06◦).

As the data were taken in wobble mode, the background es-
timation can be done using OFF-source regions in the same field
of view with the same size and offset angle (angular distance to
the pointing position) as the source region (Berge et al. 2007).

A second independent analysis, used to cross-check the
results, is based on the three-dimensional modeling of the
Cherenkov light in the shower (Lemoine-Goumard et al. 2006).
The background estimation for this second analysis was done
similarly.

With the standard analysis 827 ON and 8855 OFF events
(with a normalization of α = 0.0911) are measured, resulting in
an excess of 20 ± 30 events. The total significance of the excess
from the direction of Kepler’s SNR (calculated using Eq. (17)
of Li & Ma 1983) is 0.68 standard deviations. Figure 1 shows
in the left panel a sky map of excess events around the po-
sition of Kepler’s SNR and in the right panel the distribution
of the squared angular distance of observed gamma-ray candi-
dates from the center of the remnant in comparison to OFF data.
The angular distribution of the ON events is compatible with
the distribution of the OFF events. There is no evidence for a
gamma-ray signal from Kepler’s SNR.

The approach of Feldman & Cousins (1998) is used to cal-
culate the upper limits on the integrated photon flux above
230 GeV. At a confidence level of 99% an upper limit of
F(>230 GeV) < 9.3 × 10−13 cm−2 s−1 for an assumed photon
index of Γ = 2.0 is derived. At the same confidence level an up-
per limit on the energy flux of FE(230 GeV−12.8 TeV) < 8.6 ×
10−13 erg cm−2 s−1 in the HESS energy range for this data set
(230 GeV − 12.8 TeV) is derived. The assumed index of 2 re-
quires an upper bound for the integration range to avoid a diver-
gent energy flux.

These values depend only weakly on the assumed photon
index for reasonable values (i.e. 2.0 < Γ < 3.0).

1 The value 0.112◦ comes from a cut on the squared angular distance
of 0.0125 deg2 used in the standard HESS analysis.
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3. Discussion

To put the observed upper limit on the gamma-ray emission into
perspective, the above result is compared with theoretical ex-
pectations. Such expectations have recently been formulated by
Berezhko et al. (2006) (BKV), using a non-linear kinetic theory
of cosmic-ray acceleration in SNRs. This model is based on a
time-dependent, spherically symmetric solution of the CR trans-
port equation, coupled to the dynamics of the thermal gas. The
key assumption is that the explosion was a standard type Ia event
in a circumstellar medium at rest, representing an explosion en-
ergy ESN ≈ 1051 erg and an ejected mass of 1.4 M�. For a
given distance the hydrogen density can then be derived from
the known angular expansion velocity and size of the remnant,
assumed to be given by the radio data of Dickel et al. (1988) and
averaging these data over the azimuthal non-uniformities of the
projected SNR shell. The use of such an average value for the an-
gular velocity of the shock and the implied assumption of a uni-
form circumstellar density is a necessary approximation within
such a one-dimensional model which is meant to describe the
overall physics of a point explosion. On the other hand, the sys-
tematic errors which these assumptions introduce are difficult to
estimate, especially in the transition between sweep-up and adi-
abatic phase. BKV obtained the spectrum and the spatial distri-
bution of CR in the remnant and the density of thermal gas. On
this basis they then calculated the expected flux of non-thermal
emission (Fig. 2). To account for the uncertainties in the distance
estimate this was done for a distance range from 3.4−7 kpc.
The derived ambient density varies with the distance assumed
and the numerical results show that for a distance d as low as
4.8 kpc the SNR has reached the Sedov phase. Therefore the pre-
dicted integral hadronic gamma-ray flux roughly decreases with
distance ∝E2

SN/d
7, in agreement with the calculations shown in

Fig. 2. Approximating the emission measure for free-free emis-
sion by EM ∼ NHMsw, where Msw denotes the swept-up circum-
stellar mass, EM scales in the same way with ESN and d as does
the gamma-ray flux.

To compare the given upper limit with the model predic-
tion, the quantity F̃(>E) = E · F(>E) is determined. Here
F(>E) is the upper limit on the integrated Flux above the en-
ergy E. For E = 230 GeV the value for F̃ is F̃(>230 GeV) =
3.4 × 10−13 erg cm−2 s−1. The resulting integrated upper limits
are plotted in Fig. 2 for several energies in the range 0.23 <
(E/1 TeV) < 3.7. Note that for these values no upper bound for
the integration is needed as the quantity F(>E) decreases with
energy for spectral indices greater than Γ = 1.0.

Within the context of the model of BKV, the HESS upper
limits rule out distances smaller than 6.4 kpc for ESN ≥ 1051 erg
and thus densities larger than 0.7 cm−3, and values of EM
in excess of ≥13 M� cm−3. The mean shock velocity is then
≈4000 km s−1, and the SNR is just in transition from the sweep-
up phase to the Sedov phase.

From SN explosion theory (see BKV, and references therein)
a lower limit of ESN ∼ 0.8 × 1051 erg appears appropriate
for type Ia SNe. Considering such a reduced explosion energy,
the expected flux in gamma rays would be lower and therefore
the HESS upper limit would result in a reduced lower limit on
the distance of d > 6.0 kpc.

While in the BKV model the above value of EM that cor-
responds to the upper limit of HESS agrees quite well with the
overall number recently derived by Blair et al. (2007) from their
measurements, the distances of 6.4 and 6.0 kpc differ signifi-
cantly from the value adopted by these authors, whose distance
estimate is within the errors smaller than 5.8 kpc (see Sect. 1).
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Fig. 2. Comparison of the upper limits on F̃(E) with predictions
of BKV.

On the other hand, Blair et al. (2007) derived their distance value
from an optical filament in the northwestern region which has
the smallest expansion parameter found in the radio and X-ray
observations all around the remnant. It is also interesting to note
that the determination of the shock velocity from the Hα line
broadening should involves a CR-modified shock, in contrast to
the assumption of Sankrit et al. (2005). Efficient particle accel-
eration in the SNR modifies the shock, whereby part of the gas
compression – but only a very small part of the gas heating –
occurs in a smooth precursor, in which the CR pressure gradi-
ent slows down the incoming gas flow. This is followed by the
so-called subshock (Drury & Völk 1981) where most of the gas
heating occurs (Berezhko & Ellison 1999). The compression ra-
tio σs of the subshock is smaller than the overall shock com-
pression ratio σ. Such a shock structure implies that the shock
velocity corresponding to the downstream thermal motions is the
subshock velocity Vsub

s = σs/σ × Vs, where Vs is the total shock
velocity. In other words, a higher overall shock velocity is re-
quired to achieve the same gas heating if in addition CR are ac-
celerated. Therefore the source distance derived from the width
of the Hα line is σs/σ < 1 times the true source distance if
derived without particle acceleration. This may imply a substan-
tial systematic error. In the BKV model for Kepler, in spherical
symmetry it is σs/σ ≈ 0.4 for an assumed distance of 4.8 kpc,
and still equal to 0.6 for d = 6.4 kpc. Therefore the nominal
distance d = 4 kpc adopted by Blair et al. (2007) is equivalent
to d = 6.6 kpc, if the northwestern region considered is indeed
one where acceleration is efficient. If particle acceleration is not
efficient in this region, then the correction factor is unity. Even
a slight modification σs/σ ≈ 0.9 of the shock makes the source
distances compatible.

Independent of particle acceleration models one can use the
HESS upper limit also to constrain the content of energetic par-
ticles in the remnant. Using the limit on the flux in the range be-
tween 0.23 TeV and 12.8 TeV, an upper limit on the gamma-ray
luminosity Lγ,max = 4πFEd2 can be estimated, where FE is the
integrated energy flux upper limit. In this range then Lγ,max <

1.0 × 1032 · (d/kpc
)2 erg s−1 is derived. For power-law spectra,

the δ-function approximation

φπ(Eπ) 
 cn
Kπ
σpp

(
Eπ
Kπ

)
np

(
Eπ
Kπ

)
(1)

can be used to relate the spectra of pions (or gamma rays)
to those of the primary protons (Aharonian & Atoyan 2000);
here φπ is the pion (or gamma-ray) production rate, n the gas
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density, np the number of protons and Kπ is the mean frac-
tion of the kinetic energy of the proton transferred to the sec-
ondary π0-meson per collision. The rest mass of the proton is
neglected. For spectral indices Γ = 2−3, Kπ = 0.17 can be used
to approximate the pion spectrum (Aharonian & Atoyan 2000),
a similar value also applies for gamma-ray spectra. At high en-
ergy, the proton-proton cross-section σpp is only weakly en-
ergy dependent and can be approximated with σpp 
 40 mb
(Gaisser 1990). The HESS data probe proton energies in the
range from about 1 to 100 TeV; using Eq. (1) and assum-
ing an index Γ = 2.0, a limit on the energy in protons of

Ep < 4.9 × 1047 (
d/kpc

)2
(
n/cm−3

)−1
erg can be derived.

Extrapolating to the 1 GeV to 1 PeV range results in an up-
per limit on the total energy in accelerated protons of 1.5 ×
1048 erg

(
d/kpc

)2
(
n/cm−3

)−1
. Using d = 6.4 kpc and n =

0.7 cm−3 (dashed-3-dotted line in Fig. 2) this results in Ep <

8.6 × 1049 erg, i.e. ∼9% of the assumed energy ESN = 1051 erg.
This is of the order of what is expected for an average cosmic-
ray source in the form of a SNR. Assuming ESN = 1051 erg
and using the argument of BKV that d < 7 kpc, in agreement
with the observational argument of Reynoso & Goss (1999), the
expected gamma-ray flux should not be lower than the HESS
upper limit by more than a factor 2 as can be seen in Fig. 2.

In another scenario the gamma-ray emission can be pro-
duced via IC scattering by VHE electrons off ambient pho-
tons mainly from the cosmic microwave background (CMB).
The same electrons emit synchrotron X-ray radiation by be-
ing deflected by magnetic fields in the SNR. The energy of the
gamma-ray photons is coupled to that of the X-ray photons ac-
cording to (EX/1 keV) ∼ 0.07 ·

(
Eγ/1 TeV

)
(B/10 μG) in the

case of the CMB as target photon field for the IC scattering.
If the observed hard X-ray radiation (Allen et al. 1999), with a
flux normalisation of 6.2 × 10−5 cm−2 s−1 keV−1 and a slope
of −3.0 ± 0.2, is synchrotron radiation (with the correspond-
ing energy flux2 fX) the energy flux in gamma rays is given
by fγ(Eγ)/ fX(EX) ∼ ξ 0.1(B/10 μG)−2 (Aharonian et al. 1997).
The factor ξ takes into account possible differences in the source
sizes in X-ray and gamma-ray wavelengths. We assume here
ξ ∼ 1.

In principle one could try to use the above relations to ob-
tain a lower limit on the magnetic field strength since the up-
per limit on the flux in particular constrains any IC component.
For this purpose the energy flux from X-ray synchrotron emis-
sion at an energy corresponding to a given energy probed in
VHE gamma rays has to be known either from measurements or
from detailed modeling. The interval in EX that corresponds to
the observed gamma-ray energy interval 0.23 < Eγ/1 TeV < 3.7
is ∼(B/10 μG) × (0.02−0.26) keV, whereas the energy interval
in which the total non-thermal X-ray flux is known is 10−20 keV
(Allen et al. 1999). The X-ray instrument PCA on board RXTE,
with which the underlying data were obtained, has no imaging
capabilities and therefore the measured spectrum is the overall
spectrum of the field of view of the instrument (which is 1◦).
Although it is expected that the measured photon flux is indeed
from Kepler’s SNR because of its position well above the plane,
the X-ray flux has to be treated as an upper limit. Unfortunately
there is no published analysis of the non-thermal flux from
Chandra data covering the entire remnant. It is also not possible
to unambiguously disentangle the non-thermal and the thermal

2 f (E) = E2F(E).

contribution to the total spectrum measured by XMM-Newton
(Cassam-Chenaï, private communication).

In the energy range around a few keV the extrapolation of
the observed hard X-ray flux to lower energies involves consid-
erable uncertainties. Nevertheless, in almost all scenarios the ex-
trapolation of the power-law spectrum measured between 10 and
20 keV (with a spectral index of Γ = 3.0) should be an upper
limit to the X-ray to UV flux. With this extrapolation an upper
limit on the gamma-ray flux from IC scattering for a given mag-
netic field can be calculated using the above formulas.

For magnetic field values greater than 52 μG the resulting
predicted upper limit on the IC flux would be less than the mea-
sured upper limit of FE(3.7 TeV) < 2.91 × 10−13 erg cm−2 s−1.

From Chandra measurements of thin X-ray filaments
(Bamba et al. 2005), whose thickness is interpreted as the syn-
chrotron cooling length of the radiating electrons, the actual field
strength is B ∼ 300 μG, following the arguments of BKV and
Parizot et al. (2006). This field implies an IC gamma-ray energy
flux of fγ(Eγ) < 1.4 × 10−15 erg cm−2 s−1 which is two orders of
magnitude below the measured upper limit.

4. Conclusions

Observations of Kepler’s SNR with HESS result in an upper
limit for the flux of VHE gamma rays from the SNR. In the
context of an existing theoretical model (BKV) for the remnant,
and assuming an ejected mass of 1.4 M� and an explosion en-
ergy of 1051 erg in agreement with type Ia SN explosion models,
the lack of a detectable gamma ray flux implies a distance of
at least 6.4 kpc, which is the same as the upper limit derived
by Reynoso & Goss (1999) from radio observations. Given that
the gamma-ray flux effectively scales with E2

SN, a significantly
higher explosion energy is excluded; a theoretically acceptable
lower explosion energy of 0.8 × 1051 erg would lower the dis-
tance limit to 6 kpc.

Assuming a purely hadronic scenario, a standard type Ia
SN explosion, and using 6.4 kpc as a lower limit for the distance,
the HESS upper limit implies that the total energy in accelerated
protons is less than 8.6 × 1049 erg.

In a synchrotron/IC scenario no strong constraints on the
magnetic field can be obtained.
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