1,550 research outputs found

    Machine Mining

    Get PDF

    Secretory vesicles are preferentially targeted to areas of low molecular SNARE density

    Get PDF
    Intercellular communication is commonly mediated by the regulated fusion, or exocytosis, of vesicles with the cell surface. SNARE (soluble N-ethymaleimide sensitive factor attachment protein receptor) proteins are the catalytic core of the secretory machinery, driving vesicle and plasma membrane merger. Plasma membrane SNAREs (tSNAREs) are proposed to reside in dense clusters containing many molecules, thus providing a concentrated reservoir to promote membrane fusion. However, biophysical experiments suggest that a small number of SNAREs are sufficient to drive a single fusion event. Here we show, using molecular imaging, that the majority of tSNARE molecules are spatially separated from secretory vesicles. Furthermore, the motilities of the individual tSNAREs are constrained in membrane micro-domains, maintaining a non-random molecular distribution and limiting the maximum number of molecules encountered by secretory vesicles. Together our results provide a new model for the molecular mechanism of regulated exocytosis and demonstrate the exquisite organization of the plasma membrane at the level of individual molecular machines

    Nicotinic Acid Adenine Dinucleotide Phosphate Potentiates Neurite Outgrowth

    Get PDF
    Ca2+ regulates a spectrum of cellular processes including many aspects of neuronal function. Ca2+-sensitive events such as neurite extension and axonal guidance are driven by Ca2+ signals that are precisely organized in both time and space. These complex cues result from both Ca2+ influx across the plasma membrane and the mobilization of intracellular Ca2+ stores. In the present study, using rat cortical neurons, we have examined the effects of the novel intracellular Ca 2+-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) on neurite length and cytosolic Ca2+ levels. We show that NAADP potentiates neurite extension in response to serum and nerve growth factor and stimulates increases in cytosolic Ca2+ from bafilomycin- sensitive Ca2+ stores. Simultaneous blockade of inositol trisphosphate and ryanodine receptors abolished the effects of NAADP on neurite length and reduced the magnitude of NAADP-mediated Ca2+ signals. This is the first report demonstrating functional NAADP receptors in a mammalian neuron. Interplay between NAADP receptors and more established intracellular Ca2+ channels may therefore play important signaling roles in the nervous system
    • …
    corecore