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Abstract 
This report describes a master thesis conducted at Jumbo Supermarten B.V. The master thesis 
considers the design of an approach to generate the periodic weekly delivery schedule, a schedule 
that determines: 

- At what time a store manager is required to order at the distribution centre for its various 
categories of products; 

- At what time (corresponding to a certain moment of ordering) the store will receive the 
ordered goods at their store. 

An integrated supply chain planning approach is presented that makes use of a hierarchical planning 
framework based on Schneeweiss (2003). The model which is formulated by Broekmeulen and Van 
Donselaar (2012) makes use of a store oriented approach, where each individual store is able to 
locally choose a schedule based on an anticipated base model that contains expected costs for 
transportation and for the distribution center (DC). By influencing the anticipated base model, we 
can smooth the supply chain workload and generate a set of schedules which has a good supply 
chain performance. 
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Management summary 
This report is the result of a master thesis conducted at Jumbo Supermarkten B.V., a grocery retail 
chain in the Netherlands. Over the past years the company has expanded rapidly and with the 
acquisition of the Dutch supermarket chain C1000 in 2012, the company will have an estimated 
turnover of 7,0 billion euro per year, a market share of 20 percent and 600 stores.  

Analysis of the problem context 

This master thesis considers the periodic weekly delivery schedule (PWDS), a schedule which 
determines at what time a store manager is required to order at the distribution center and at what 
time (corresponding to a certain moment of ordering) the store will receive the ordered goods at the 
store. Figure 3 in chapter 1 shows that regarding this process, store handling costs and costs for the 
distribution center both comprise about 40 % of the total relevant cost distribution. Transportation 
accounts for the remaining 20 %. From these results it was concluded that in contrast to the current 
process which is based on a sub optimization per step in the supply chain, a supply chain integrated 
planning approach is needed. The current process is labor intensive and the outcome of the process 
is a result of multiple iterations between the stakeholders in the process. This leads to the problem 
statement as follows: 

How can Jumbo Supermarkten B.V. generate a Periodic Weekly Delivery Schedule that has the lowest 
total cost for the supply chain and takes into account all constraints? 

This question is accompanied by two sub questions: 

1. How can Jumbo Supermarkten B.V. simplify the process of designing a Periodic Weekly 

Delivery Schedule? 

2. How can Jumbo Supermarkten B.V. increase the performance (i.e. reduce costs) of the 

Periodic Weekly Delivery Schedule, and what is the influence of the backroom on this 

performance? 

Conceptual model 

Based on the analysis, a model is developed that is based on the hierarchical planning framework of 
Schneeweiss (2003). The model consists of a top level (a store) and a base level (transportation and 
DC), where the top model makes decisions based on an anticipated base model. Thus, each store 
individually makes the choice for a schedule based on an instore cost model and the anticipated 
costs for the remainder of the supply chain (the anticipated base level). By means of influencing the 
antipated base level costs, we can influence the schedule choice and thereby, the workload for 
transportation and the distribution center. 

The anticipated base model contains the anticipated base costs and capacities for transportation. To 
avoid stores to be privileged or prejudiced based on the distance to the distribution center, we 
include a parameter in the model which resembles the costs per drop which is the same for all 
stores. 

To account for the costs of the distribution center in the anticipated base level, we introduce a 
smoothing tariff. Changing the smoothing tariff (per roll container per timeslot) gives the opportunity 
to smooth the workload since top level decisions by the store can be influenced by changing the 
smoothing costs. 
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Analytical model 

This master thesis makes use of the analytical model of Broekmeulen and Van Donselaar (2012). The 
model is deterministic and makes use of the framework of Schneeweiss (2003).  

Beta(it) 

The model of Broekmeulen and Van Donselaar (2012), contains a parameter beta(it) which resembles 
the fraction of total sales for store   and timeslot   which are sold from shelves requiring concurrent 
replenishments.  

When beta is equal to one, the complete expected delivery volume does not fit in the shelves in the 
timeslot of delivery. Hence, the expected delivery volume needs to be placed in the backroom. The 
volume will be stacked during remaining timeslots in the review period and the concurrent volume in 
the backroom decreases in line with the sales pattern.  

In contrast, when beta is equal to zero, the store can stack the complete expected delivery volume in 
the shelves immediately. Hence, this leaves more room for instore optimization. Hence, the 
parameter has two effects: 

- First, beta (it) has direct influence on the schedule choice in combination with handling costs 
due to the fact that the fraction concurrent is stacked in the model by means of fulltime 
workers. 

- Second, beta(it) has an indirect influence on the schedule choice in combination with 
handling costs due to the fact that the fraction concurrent determines the constraining effect 
of the backroom. 

Chapter 3 of this master thesis specifically focuses on the analysis of the parameter beta(it). The 
analysis firstly showed that the quality of the SAP shelf capacity data was not as good as expected, at 
least for very fast moving products. A data quality check for 18 stores and 3 very fast moving 
products per store, showed that for these products the actual shelf capacities are on average 116 % 
higher than the shelf capacities in SAP. Due to the fact that SAP shelf capacity is used to perform an 
instore logistical optimization, an improvement of data quality can lead to a more smoothed store 
demand and thereby to large cost savings in the remainder of the supply chain. 

Secondly, after a choice for the definition of beta as described in section 4.1, the analysis focuses on 
approximation of beta(it). The original computation of beta(it) according to the definition occurs per 
product per store which causes a very high demand for computational resources. Approximation by 
means of readily available data increases the efficiency of the model. The approximation was split up 
in two parts: approximation of gamma(i), which represents the average of beta(it) over all timeslots, 
and an approximation of the seasonal effect of beta(it) represented by alpha(it). 

The approximation of the two parameters yielded three conclusions: 

- Regression analysis does not show a significant relationship between turnover pressure 
(turnover in Euros per square meter store floor area) and gamma(i). 

- Regression analysis showed a significant relationship between turnover share beer and 
turnover share coke and soda. 

- Approximation of alpha(it) by means of a store dependent seasonal index parameter of the 
consumer turnover per day does not yield a good approximation. Beta(it) has a much larger 
amplitude and a generic correction for the difference in amplitude does not yield better 
results than approximation of beta(it) by means of time independent parameter gamma(i). 
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Numerical study 

To start with the numerical study of the approach of Broekmeulen and Van Donselaar (2012), 
chapter 5 considers the input data of the model. An important conclusion is that although the 
approach of Broekmeulen and Van Donselaar assumes that the (expected) delivery volume is equal 
to the sum of sales during the review period, data analysis shows that stores make use of order 
advancement. This means, stores order more at the beginning of the week and stores order less at 
the end of the week leading to an over- or underestimation of the expected delivery volume for a 
certain store and a certain schedule. 

 
Figure 1: Aggregated load per timeslot   

 
Figure 2: Occupancy rate per timeslot 

Regarding the output of the model of Broekmeulen and van Donselaar (2012), we can draw five 
conclusions. 

First, the approach of Broekmeulen and Van Donselaar (2012) is able to reduce the peak load in the 
distribution center as is shown in figure 1. Reduction of peak loads is beneficial for the distribution 
center in two manners: 

 First, the reduction of peak loads leads to a lower demand for (flexible) temporary workers. 

 Second, a peak load causes a reduction of the labor productivity due to congestion in DC 
corridors which indirectly increases costs. 

Second, the approach of Broekmeulen and Van Donselaar (2012) is able to decrease Jumbo’s 
transportation costs by means of a better matching of supply and demand as shown in figure 2, for 
respectively truck capacity and roll containers. In contrast to the current situation at Jumbo 
Supermarkten, the approach takes into account the expected delivery volume versus truck capacity 
at the moment of schedule selection instead of conducting a sub optimization later in the process. 

Third, allocation of a relatively small tariff can already provide an incentive to the stores that is large 
enough to balance the DC workload to a large extent. A maximum smoothing tariff of € 2 per roll 
container per timeslot showed a much more smoothed workload distribution.  

Fourth, the distribution of the number of delivery days which is obtained by the approach of 
Broekmeulen and van Donselaar (2012) is comparable on average with the current distribution of the 
number of delivery days used by Jumbo Supermarkten. However, the result per store obtained from 
Broekmeulen and Van Donselaar (2012) showed a much larger standard deviation. 

Fifth, for 117 out of 122 stores the delivery frequency is equal to the minimal delivery frequency. The 
5 stores with a deviating delivery frequency showed an increase of the delivery frequency with 
exactly one delivery. Hence, regarding the fact that delivery frequencies are more or less fixed, the 
approach of Broekmeulen and Van Donselaar (2012) mainly contributes by optimizing the 
distribution of delivery days. 
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Conclusion and recommendations 

The research question consists of two sub questions. The first research question considers how 
Jumbo Supermarkten can simplify the process of designing a periodic weekly delivery schedule 
(PWDS). The current schedule generation process consists of many steps and many stakeholders 
which leads to a labour intensive and time consuming process. The model has shown to provide good 
results where the time needed for schedule generation is limited to about 40 minutes. Thus, the 
introduction of an integrated schedule generation system can shorten the lead-time of the schedule 
generation process and reduce the (human) resources needed to generate the schedule. 

The second research question considers how Jumbo Supermarkten can increase the performance of 
the PWDS. As shown in chapter 6, the approach of Broekmeulen and Van Donselaar (2012) has the 
potential to improve the performance of the model output. The integrated approach leads to a 
better match between supply and demand of respectively capacities and roll containers. This has the 
potential to reduce peak loads for the DC, costs for transportation and yield better schedules for 
stores. 

Recommendations for Jumbo Supermarkten 

The supply chain cost composition discussed in chapter 1 gives evidence for the introduction of a 
supply chain oriented planning process. Regarding the improvement that can be made on both 
process and performance, one recommendation for Jumbo Supermarkten is to implement a new 
supply chain planning system which aims at the generation of an integrated planning with benefits 
both for process and for schedule performance. 

Second, chapter 4 showed that the quality of the SAP shelf capacity data of very fast moving prodicts 
is lower than expected. Hence, it is recommendable to investigate: 

- To what extent this sample size is representative for all products and all stores; 
- To what extent the workload balancing for transportation and for the DC can be improved by 

an improvement of the data quality within the stores; 

Subsequently, it can be beneficial to provide incentives for stores to increase the SAP data quality. 
Stores show large differences in terms of variability of store demand. Hence, it is recommendable for 
Jumbo to investigate the extent to which it is possible to influence store order behavior. 
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Introduction 
The current retail environment can be characterized as extremely competitive. High customer 
expectations combined with intense competition lead to the difficult task of achieving high 
(logistical) performance while selling products with low margins. To guarantee this high 
performance, an effective and efficient retail supply chain is of vital importance. To realize this 
cost effectiveness, a supply chain-broad view on planning is necessary. 

The basis for this report is a project at Jumbo Supermarkten, the second largest supermarket 
chain in the Netherlands. Subject of the project is the Periodic Weekly Delivery Schedule (or in 
Dutch: Bestel- en Afleverschema), determining which product categories have to be ordered and 
when to be delivered on a certain moment in time. More about the Periodic Weekly Delivery 
Schedule (PWDS) will be explained in chapter 1.  

The master thesis should both contribute to the research available on retail supply chain 
planning and it should yield an approach for the generation of periodic weekly delivery 
schedules. This can provide a basis for an integrated planning system that could be 
implemented at Jumbo Supermarkten. Given these goals, the following chapters will provide 
such an approach which allocates the delivery of stores to a certain timeslot. 

This report consists of seven chapters. Chapter 1 introduces the problem context and formulate 
the research question. Chapter 2 and chapter 3 consider the formulation of the conceptual and 
analytical model, respectively. Chapter 4 focuses on the analysis on the analysis of one specific 
parameter of the model, beta(it). Chapter 5 contains a numerical study of the analytical model. 
Chapter 6 addresses the implementation of the model. Finally, chapter 7 concludes the report 
and formulates recommendations for Jumbo Supermarkten. 
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Chapter 1: Introduction of the research context 
 
To start with, this chapter focuses on a delineation of the research context. The purpose is to 
get an idea of the problem context and to show understanding on this topic (van Aken et al., 
2007). For the sake of structure, this chapter is separated in four parts. The first part mainly 
focuses on the internal context of the problem within the company and it contains a brief view 
on the company’s history, organizational issues and the distribution structure. The second part 
treats the external problem context which embraces the positioning and developments of the 
supermarket chain. The third part addresses the direct problem context of the problem. Finally, 
the fourth part considers the problem definition. 

1.1 Internal problem context 

1.1.1 Company establishment 

The master thesis has been carried out at Jumbo Supermarkten, a grocery retail chain in the 
Netherlands. Originated as a family owned wholesale company in 1921, the transition to self 
service supermarket created the opportunity for the wholesale company (by that time still 
known as the van Eerdt groep) to vertically integrate by acquiring several supermarkets. After 
trying several formulas the “Jumbo” formula, acquired by the company in 1983, has proven 
great success in the past decades. Especially over the past years the formula has expanded 
rapidly and the recent acquisition of the Dutch C1000 supermarkets in 2012 will lead to an 
almost doubling of the number of supermarkets owned by the company. The takeover is 
approved by the Netherlands Competition Authority, and at the end of the integration process 
Jumbo Supermarkten will become the second largest grocery retail chain in the Netherlands. 
The new combination will have an estimated turnover of 7,0 billion Euro per year and a market 
share of about 20 percent generated in more than 600 stores supplied by 5 distribution centers. 
The company is still wholly owned by the van Eerd family.  

Currently, Jumbo Supermarkten is in the middle of the integration process with C1000. This has 
implications for, for example, the number of distribution centers and the number of stores 
although the logistical structure as such will remain unchanged. To avoid confusion, we will 
consider the situation prior to the integration of C1000 in the remainder of this report. 

1.1.2 Mission & vision 

The mission of the company is clear, the company aims at acquiring a permanent market leader 
position in every place where a “Jumbo”-store is located. The formula is well known for the fact 
that it promises to provide “customer service to the extreme” combined with an Every-Day-
Lowest-Price guarantee. With this formula the company operates on the edge, providing unique 
value to their customers. The company enforces this customer-minded culture with its “seven 
daily securities” (in Dutch: “zeven dagelijkse zekerheden”), seven rules that guarantee good 
service to customers every day. 
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1.1.3 Internal structure  

Within Jumbo Supermarkten B.V. basically all parties relevant for the problem fall under the 
responsibility of the Supply Chain Management director, apart from the Store Operations 
department. Apart from three facilitating departments, the Supply Chain Management 
department is split up in four sub departments: 

- Department “Logistiek” which is responsible for the functioning of the distribution 
centers; 

- Department “Productie” which is responsible for the two production departments, the 
butchery and the flowers & plants department; 

- Department “Transport” which is responsible for planning and operationalization of the 
transportation function; 

- Department “Replenishment” which is responsible for the replenishment of the DC’s and 
stores. 

The organizational chart is shown in appendix i. Schedule generation is done by the (tactical) 
replenishment department, in consultation with the stores, the Logistical Planning department, 
the DC-managers and Transport. 

1.1.4 Logistical structure 

Jumbo Supermarkten works with a distribution structure consisting of Regional Distribution 
Centers (RDCs) which are used for fast moving products, and National Distribution Centers 
(NDCs) for slow moving products. Within these two types of distribution centers there is a 
difference in conservation circumstances needed, which results in a distinction between DC’s for 
dry groceries, fresh goods and frozen goods. 

Geographically, the stores of Jumbo Supermarkten are more concentrated in the south of the 
Netherlands although the chain is moving more northwards over the past years, especially after 
the acquisition of the supermarket chains Super de Boer and C1000. The 300 stores of Jumbo 
Supermarkten prior to the integration of C1000 are currently supplied by two DCs: one DC in the 
north of the Netherlands (DC North) and one DC in the south of the Netherlands (DC South). 

The distribution center in the south of the Netherlands is about twice or triple as large as DC 
north, depending on the unit of measurement. DC South is currently working in a two shift 
structure and operates at nearly full capacity. DC North is currently working in a one shift 
structure and has capacity to expand and to handle more stores than the DC is doing at the 
moment.  

All stores are allocated to either DC North or DC South for a certain product group (dry 
groceries, fresh produce, frozen goods). The allocation of stores to distribution centers is done 
based on both cost and capacity considerations. Certain stores which should be allocated to DC 
South regarding transportation costs are currently allocated to DC North for capacity reasons. 

1.1.5 Supply chain cost analysis 

A supply chain cost analysis gives an indication of the cost-based influence of the three supply 
chain steps on the periodic weekly delivery schedule. An estimation of the relevant cost per 



 

 

4 

 

chain which is elaborated in appendix iii leads to an overall view on supply chain costs for the 
PWDS, shown in figure 3. 

 
Figure 3: Total relevant cost composition 

This result matches the supply chain cost composition as given by Broekmeulen (2004). 
Although the costs included in the cost composition are all relevant to the PWDS, it is not 
possible to draw a conclusion about the extent to which these costs can be influenced as such. 
Based on the cost composition one can conclude however, that a planning system which is 
purely aimed at minimizing transportation costs is likely to produce inferior results compared to 
a system that takes into account the other supply chain steps as well. 

1.2 External context 
Jumbo Supermarkten B.V. is acting in an environment which is very dynamic. With a fast growth 
over the past decades the challenges are high for the company and the logic/supply chain 
department in particular. The takeover of other supermarket chains combined with an 
autonomous growth causes an almost continually changing logistical structure and an increasing 
demand for capacity for transportation and distribution centers.  

The most recent data available, the market shares of supermarkets in 2010 shown in table 1, 
show the stepwise growth of Jumbo Supermarkten in the past years. On top of this, the 
takeover of Super de Boer in 2009 and of C1000 in 2012 will make Jumbo Supermarkten the 
second largest supermarket chain in the Netherlands. Jumbo Supermarkten tries to find the 
combination between high service and low prices (EDLP) which leads to the positioning of the 
supermarket chain in the middle segment as shown in figure 4. Locally, the main competitors on 
price are the price discounters in the middle segment. Albert Heijn, the largest supermarket 
chain of the Netherlands, is the largest player on national level with the largest buying power. 
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   2007 2008 2009 2010 

 

1 Albert Heijn 29.5% 31.3% 32.8% 33.6% 

2 C1000 14.3% 13.2% 11.7% 11.5% 

3 Aldi 8.9% 8.5% 8.3% 7.9% 

4 Plus 6.0% 6.1% 6.0% 6.0% 

5 Lidl 4.0% 4.8% 5.4% 5.6% 

6 Super  

de Boer 

7.3% 6.8% 6.5% 5.5% 

7 Jumbo 4.4% 4.8% 4.9% 5.5% 

8 Detailconsult - - 4.2% 4.2% 

9 Coop 2.4% 2.5% 2.4% 2.5% 

10 Spar 1.9% 2.2% 2.3% 2.2% 

Table 1: Top 10 market shares Dutch supermarket 
chains, chain structure start of 2011 (Nielsen,2011)  

Figure 4: Positioning of Jumbo Supermarkten  
(GfK-Foodscan, Kerstrapport 2009) 

1.3 Direct problem context 
Subject of the master thesis involved is the Periodic Weekly Delivery Schedule (or in Dutch: 
Bestel- en Afleverschema) of which an example is shown in appendix ii. In short, the Periodic 
Weekly Delivery Schedule (PWDS) determines: 

- At what time a store manager is required to order at the distribution centre for its 
various categories of products; 

- At what time (corresponding to a certain moment of ordering) the store will receive the 
ordered goods at their store. 

Due to this central role in the retail supply chain, the planning and execution of this schedule 
has consequences for four different steps in the supply chain: 

- The schedule influences the stores. The PWDS determines the daily operations at the 
store, which influences factors such as workforce scheduling, shelf stacking efficiency 
and available backroom capacity; 

- The schedule influences transportation. The schedule determines the frequency and 
time of delivery which influences for example, occupancy rates and hiring decisions for 
extra truck capacity in terms of quantity and type. 

- The schedule influences the distribution centers, both regional and national. The PWDS 
almost completely determines the workload at a given moment in time and thereby, it 
influences factors such as workforce hiring, the degree of congestion caused by a certain 
workload and dock planning constraints; 

- The schedule influences manufacturers, primarily in an indirect manner. As described 
before, the PWDS determines the workload at the dock station and in the distribution 
center. Since retail chains demand high logistical performance from their suppliers, such 
as high speed delivery with high reliability, the schedule determines the (cross) docking 
constraints for manufacturing. However, since the PWDS is designed by the retailer, the 
costs factors involved at the supplier are often left out of scope by the retail chain when 
developing the schedule. 
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Concluding, one can say that the PWDS is the logistical thread through the company involving a 
large number of stakeholders inside and outside the company. Since all these parties claim their 
influence on the schedule, the establishment of such a schedule is not an easy process and time 
is needed to accomplish this. At the moment, the Periodic Weekly Delivery Schedule of Jumbo 
Supermarkten is developed involving a total number of 74 steps, according to a process 
description. The process can roughly be grouped in the following steps: 

- Determining the supply chain characteristics; Acquiring the characteristics of stores, 
transport and DC such as opening times and storage capacities; 

- Generation and communication of the conceptual version; 
- Adjusting schedule to comments if needed and communicating the final version; 
- Operationalizing the PWDS: generating the workload schedule, personnel planning, dock 

planning, wave planning, etc.; 
- Evaluation. 

The current process is the result of a constant adaptation of the planning process, which 
eventually results in a solution that works. Some factors not taken into account in the process; 
others are taken into account in a simplified manner. For example, variation in the store 
demand forecast is taken into account by adding a certain percentage to each forecast and using 
this as the input demand data for the logistical planning program which makes use of artificially 
enlarged truck capacities.  

The process makes (direct or indirect) use of several different systems (store replenishment 
system, DC WMS system, tactical transport planning system) and these different systems are 
coupled via handmade excel spreadsheets. The current process takes into account different 
types of capacities and the solution looks reasonable. 

1.4 Problem definition 
The goal of this paragraph is to formulate the research question, based on two parts. First, it will 
be formulated based on gaps in the literature on the topic of the PWDS as formulated in the 
literature review and second, the company’s problem statement. 

1.4.1 Literature review 

In the literature review conducted prior to this master thesis (van Dun, 2012), several areas 
were identified as suitable for further research. The integration of all supply chain cost factors in 
one approach was identified as the main gap in the literature and suitable for further research. 
Research on the topic of the PWDS was mainly concentrated by transportation issues, thereby 
leaving the other steps of the supply chain out of scope (e.g. Gaur, 2004). The inclusion of 
workload balancing in the distribution center and store costs and capacities will ultimately lead 
to the best supply chain planning. 

1.4.2 Company problem definition 

An intake meeting and interviews with several employees of Jumbo Supermarkten B.V. supplied 
information for the cause and effect tree. All interviewees were somehow related to the 
Periodic Weekly Delivery Schedule. The general conclusion is that the current process of 
generating a set of schedules works, but it is more the result of an incremental development 
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than an integrated supply chain approach. The large number of steps in the process, the large 
number of stakeholders and the large number of workarounds leads to a labor-intensive and 
time consuming process. In addition, interviewees indicate that an integrated supply chain 
approach that makes use of an integrated approach has the potential to yield a better set of 
schedules. The information gathered during the interviews leads to the cause-and-effect 
diagram shown in figure 5. 
 

Suboptimal PWDS

Suboptimal 

performance

Cumbersome process

Not all factors included 

in the right manner

Not all factors included 

in planning process

Step by step adaption, 

no integral planning

Deficient functioning of 

planning software

 
Figure 5: Cause-and-effect diagram 

 
The fact that the two sub problems, process and performance, go hand in hand when (re-) 
designing the solution, makes the choice for “suboptimal PWDS” a sound starting point of the 
project with the following problem statement: 
 
The current procedure for generating the PWDS at Jumbo Supermarkten is inefficient and, 
presumably, also ineffective. 

1.4.3 Research question formulation 

The preceding section aligned the problem statement at Jumbo Supermarkten and section 1.4.1 
showed a summary of the literature review conducted for this study. The combination of these 
two is combined into the following research question: 

How can Jumbo Supermarkten B.V. generate a Periodic Weekly Delivery Schedule that has the 
lowest total cost for the supply chain and takes into account all constraints? 

This question is accompanied by two sub questions: 

1 How can Jumbo Supermarkten B.V. simplify the process of designing a Periodic 

Weekly Delivery Schedule? 

2 How can Jumbo Supermarkten B.V. increase the performance (i.e. reduce costs) of the 

Periodic Weekly Delivery Schedule, and what is the influence of the backroom on this 

performance? 

The first goal of this master thesis preparation is to make a contribution to academic literature 
available on this topic. This goal will be achieved by the focus of the thesis on integrated supply 
chain planning, instead of limiting the focus to transport planning. In this supply chain focus on 
planning, the analysis of the influence of the backroom capacity on this schedule and on the in 
store logistics is interesting for academic literature, due to the limited amount of research 
available and the large potential influence on handling costs. The second goal is to yield an 
approach for the generation of periodic weekly delivery schedules. 
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Chapter 2: Conceptual model 
The prior chapter considers the introduction of the research context. This chapter outlines the 
development of a conceptual model. Section 2.1 considers the discussion of cost factors 
involved with the schedule generation. Section 2.2 outlines the problem context. Section 2.3 
describes the current conceptual model and section 2.4 considers the development of a new 
conceptual model. Finally, section 2.5 describes the final conceptual model. 

2.1 Cost factors 
This section outlines the cost composition per supply chain step; the detailed modeling of each 
cost component will be treated later in more detail. 

2.1.1 Store 

Within a store, the largest fraction of costs such as salary costs for cashiers and housing costs 
has to do with daily operations which are independent from the delivery schedule. For the 
model, we will only consider costs that are dependent on the selection of the delivery schedule. 

When a delivery arrives at a store, in general products are placed in the backroom and these 
products can be stacked during planned replenishment. However, when the delivery volume 
does not fit in the backroom this requires immediate shelf stacking which affects handling costs. 
Hence, the influence of the periodic weekly delivery schedule will be assumed to be limited to 
handling costs. Store handling costs will be modeled by means of a cost and capacity model 
which depends on arrival time block of a delivery at the store. 

2.1.2 Transport 

The transportation supply chain step within Jumbo uses a cost realization composition which 
contains '''''''''''' components: '''''''''''''''''''' ''''''''''' ''''''' '''''''''' '''''''''' ''''''' ''''''' The first '''''''' cost 
components are variable in a linear manner '''' '''''' '''''''''''''''' '''' ''''''''''''''''''' ''''''' ''''''' '''''''''''''''' '''' 
'''''''''''' '''''''''''' '''' '''''' '''''''''' ''''''''''. The last cost component '''' ''' '''''''''' '''''''''' ''''''' ''''''''''' ''' ''''''''''''''' 
'''' ''''''' ''''''''' ''''' ''''''' ''''''' '''' '''''''''' '''''''''' ''''''' '''''''''' ''''''' ''''''''' ''''''' '''''''''' ''''' '''''''''''''''' '''' '''''''''''''''''' 
''''''' '''''''''''''' '''' '''''''''''' ''''''' ''''''''' ''''''' ''''''' ''''''''''''''' ''''''' '''' ''''''''''''''''''''' ''''' '''''''''''''''' '''''''''''''' ''''''''''' 
''''''''''''''''''  

The '''''''''' costs components consider the costs for planned routes where the expected delivery 
volume does not exceed the truck volume. However, to penalize for the exceedance of truck 
capacity and to take into account extra overhead costs that need to be made operationally, a 
'''''''''''' cost component must be included which consists of the extra operational costs for route 
overflow.  

2.1.3 Distribution Center 

The performance of the distribution center is based on the aggregated number of containers of 
all routes departing from the distribution center within a certain time slot. Therefore, the costs 
for the distribution center per time block are dependent on the aggregated set of routes that 
depart from the distribution center during that time block. 
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2.2 Problem context 
The prior section illustrated the cost composition of the three supply chain steps involved. 
However, all three supply chain steps’ costs depend on a different timeslot: 

- DC costs depend on the DC departure timeslot; 
- Transportation costs depend on the clustering of stores, i.e. the extent to which 

deliveries for multiple stores are combined in one route; 
- Store handling costs depend on the store arrival timeslot;  

Figure 6 illustrates the difficulty of the problem: the factors are linked, since the lead-time from 
the moment of departure at the DC until the moment of arrival at the store is variable due to 
clustering. In other words, the dependency has a hierarchical form as shown in figure 7 which 
depends on the definition of either the store as the starting point of the hierarchy or the 
definition of the DC as the starting point of the hierarchy. 

DC departure 

time block

Clustering

Store arrival 

time block

 
Figure 6: Supply chain cost dependency 

Store arrival 

time block

Clustering

DC departure 

time block

Store arrival 

time block

Clustering

DC departure 

time block

 
Figure 7: Hierarchical supply chain dependency,  
Option 1 (left) and Option 2 (right) 

 
The choice for the store arrival time block or the DC departure time block as the starting point of 
the model has large implications on the (conceptual) modeling, since it defines the mutual 
dependency within the supply chain. Hence, two options are possible: 

- Define store arrival time block as the starting point, as shown in option 1 in figure 7. This 
would define the delivery schedule at the store first, based on the time block of arrival, 
followed by clustering and consideration of the DC workload.  

- Define the DC departure time as the starting point, as shown in option 2 in figure 7. This 
would define the delivery schedule at the distribution center first, based on the DC 
departure time block, followed by clustering routes and consideration of the store costs.  

Since costs for the store are more influenced by time block variability than costs in the DC which 
are based on aggregated volumes, we will continue under the definition of the time block of 
arrival at the store as the starting point of the model. Thus, the hierarchical structure is defined 
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as shown in option 1 of figure 7. A schedule will give an overview of the time slots in which a 
store will receive a delivery, and in which time slots it does not. 

The interdependence of the supply chain steps has a hierarchical form, as shown in figure 7. To 
model this dependence the hierarchical planning framework as introduced by Schneeweiss 
(2003) is used, which is shown in figure 8. This model makes use of an anticipated base model, a 
model which anticipates on the reaction of the base model. An example of this hierarchical 
structure is the instruction of the operational production department by the strategic 
production planning department. The anticipated base model here resembles the anticipated 
reaction of the operational production department. 

 
Figure 8: Interdependency of hierarchical levels, planning concept based on Schneeweiss (2003)  

The hierarchical problem context defined in the prior section can be defined in terms of this 
framework as well. In line with the hierarchal dependency as discussed in the prior section, the 
store supply chain step forms the top level. Based on a cost and capacity model, the top model 
defines can calculate costs for each of the optional schedules. 

In addition, the store will consider the anticipated supply chain costs per schedule for 
transportation and handling in the distribution center. The combination of the instore handling 
costs and the anticipated base level costs eventually leads to the local choice for the schedule 
with the lowest combined supply chain costs as shown in figure 9. The following two sections 
describe the current conceptual model of Jumbo Supermarkten and the design of a new 
conceptual model. 
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Top level

Base level

Transport and Distribution center

Factual instruction
Reaction

Anticipated base model

Transport and Distribution Center

Top model

Store

 
Figure 9: Conceptual model description 

2.3 Current conceptual model 
Currently at Jumbo Supermarkten, a hierarchical decompositioning approach is used in which 
candidate schedules are selected based on a combination of company rules, based on turnover 
and turnover pressure, and an instore capacity simulation. 

Based on the output of this step, the set of schedules with the minimal store handling costs is 
used to determine a transportation clustering and finally to calculate the influence of this 
candidate on the DC. Figure 33 in appendix iv resembles this process. A result of the design of 
this conceptual model is that candidates for the base model are “biased”, since the current “top 
level” selects only one candidate schedule per store. This constraints the optimization by 
transportation and the distribution center to sub optimization given a certain set of schedules, 
instead of influencing the schedule choice. 

Although the current solution can be improved by means of iterations after feedback of the base 
model, the end result is likely to improve at a slow pace since the candidates’ priority is still 
based only on store costs and capacities. 

2.4 Anticipated base model with supply chain costs 
As explained above, the inclusion of an estimation of transportation and distribution center 
costs gives the best anticipation for the base model. To define the model, the first step is to 
cope with the dependency of supply chain costs on the cluster’s lead time of the distribution 
center, the store and transportation. To cope with the lead-time dependency on clustering of 
stores in one route, constant lead-time is assumed. Furthermore, we assume that all routes 
depart from the DC and arrive at the store within the same time block. This is realistic due to the 
close proximity of stores relative to the DC. Hence, we assume a lead-time which is equal to zero 
for all stores. Based on the assumption of a constant lead-time which is equal to zero, an 
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anticipated base model can be formulated which estimates the transportation and distribution 
center’s costs.  

2.4.1 Transportation costs 

As discussed in section 2.1.2, the cost composition for transportation within Jumbo 
Supermarkten is based on ''''''''''' cost components'' '''''' ''''''''''''' '''''''''' '''''''''''''''''' '''''''''' '''''''' '''''''''' 
'''''''''' ''''''' ''''''' To incorporate the costs in the model that need to be made in case of route 
overflow (i.e. sum of delivery volumes for stores in a route exceeds truck capacity), expected 
overflow costs need to be included. Based on these ''''''''' components the expected 
transportation costs for a delivery from the DC to a certain store can be estimated, by assuming 
a single store route. 
 
However, when we include a store dependent estimation of the expected transportation costs 
in the anticipated base model, this will prejudice stores with a large distance and privilege stores 
with a relatively small distance to the DC. In practice, this will lead to a situation where for two 
comparable stores in terms of consumer turnover, the delivery frequency for a store near the 
distribution center will be high and the delivery frequency of a store relatively far from the 
distribution center will be low. This is not in accordance with the equality principle which is used 
within Jumbo Supermarkten considering the equal treatment of stores. Hence, instead of using 
an estimation of the actual transportation in the ABL, a new parameter is introduced which 
represents the costs per drop. These drop cost should give an indication of the costs per drop, 
but the value of the parameter does not differ per store. 

2.4.2 Distribution center 

As can be seen in the prior section, the costs for transportation in the anticipated base model 
can be estimated by assuming a single store delivery or by means of including drop cost in the 
model. Since costs for the distribution center are completely based on the aggregated volumes, 
it is not possible to determine the exact expected costs for a certain schedule in the DC. 
However, if we do not introduce costs in the model for the distribution center, it is likely that 
the distribution center will experience extremely volatile workload distribution.  
 
Thus, in order to result in a supply chain wide optimization, certain stores will have to have a 
schedule which is not per definition optimal as such for that specific store. The introduction of a 
fictitious cost parameter is a manner to balance the workload and by means of adapting the 
parameter we can influence the workload for a certain timeslot. Hence, the store is 
“compensated” to receive a sub optimal schedule, which incorporates the sensitive subject of 
the distribution of earnings in the model.  
 
Since decisions on the top level will be taken based on the anticipated base model, the next step 
is to further specify this model.  
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2.5 Final conceptual model definition 
When we aggregate the results of the discussion in the prior section, the formulation of the 
anticipated base model leads to the scheme as shown in table 2.  

 Store Transport DC 

Top level - Handling costs   

Anticipated  
base level 

 - Drop cost* 
- Expected overflow costs* 

- Fictitious fee* 

* Assumptions:  
   Single store route 

* Assumptions:  
   Lead-time is constant and 

equal to zero 

Base level  '''''''''''' 
''''''''''''''''''''  
''''''''''''' ''''''''' '''''' ''''''  
''''''''''''''''''' ''''''''''''''''' '''''''''' 

- Aggregated container costs 
 

Table 2: Formulation of the base level and the anticipated base model costs,  Schneeweiss (2003) 

The anticipated base model ultimately gives an anticipation for the reaction of the base model 
on a certain set of schedules. With this anticipated based model, we come to the final 
conceptual model as displayed schematically in figure 10.  

Input data

Optional 

schedules

Required input data

Calculation of 

store costs per 

schedule

Optional schedules per store

Clustering

1 set of schedules

Output

1 set of schedules, clustering

Feedback loop

Top level

Base level

Final decision

Anticipated base 

model calculations

 
Figure 10: Design of the conceptual model 
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The final conceptual model has 6 phases represented as blocks in figure 10, which we will 
elaborate in this paragraph. 
 
Phase 1: Input data 
In phase 1 all input data is gathered or estimated which is needed in the following phases of the 
model. 

Phase 2:  Optional schedules 
This phase includes the demarcation per store of schedules which are optional or not. This 
decision can be based on several factors such as a minimum delivery frequency depending on 
truck capacity or on agreements between the store and Jumbo Supermarkten. Output of this 
phase is the collection of schedules which are an option to become the delivery schedule for a 
specific store, per store. 

Phase 3: Calculation of store handling costs per schedule 
Phase 3 considers the calculation of the handling costs per schedule based on a cost and 
capacity model. This is the output of this phase.  

Phase 4: Anticipated base model calculations 
This phase comprises the calculation of the costs of the anticipated base model. Combined with 
the store costs calculated in the prior phase, all stores (or Jumbo on behalf of the store) choose 
one particular delivery schedule. The set of schedules is output of the model, with one schedule 
per store for all stores. 

Phase 5: Clustering 
In the clustering phase, the combination takes place of multiple deliveries in one truck within 
the same timeslot based on a certain clustering algorithm. Output of this model is a clustering of 
stores per route per time block. 

Phase 6: Output 
By means of the output of the clustering phase, this phase calculates the full expected supply 
chain costs for a specific candidate set of schedules. 

Feedback  loop 
The feedback loop, or the “reaction” in the concept of Schneeweiss (2003), gives the bottom-up 
feedback on the candidates. This may be the adaption of the smoothing tariffs. 

Final decision 
The final decision to choose a certain set of schedules will be based on a stop-criterion to be 
specified later. The set of schedules with the minimum costs will be the output of the model. 
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Chapter 3: Analytical model 
For the assignment of a delivery schedule to all stores allocated to a distribution center at the 
tactical level, we will make use of the model formulated by Broekmeulen and Van Donselaar 
(2012) which is shown in appendix v. This chapter will give a short qualitative description of the 
model. This model makes use of a hierarchical planning structure as described in chapter 2, 
where the top level consists of store costs. Per store, the set of optional schedules can be 
constrained for example due a minimal delivery frequency constraint regarding the weekly 
volume relative to the truck capacity. For each of the optional schedules the top level calculates 
the instore handling costs.  

The model distinguishes two types of handling costs: costs for regular shelf stackers and costs 
for fulltime shelf stackers where the available capacity of regular shelf stackers is limited 
depending on store and timeslot. The eventual employment of these two types of workers is 
influenced by the available backroom capacity. 

The model of Broekmeulen and Van Donselaar (2012) assumes a difference between two filling 
regimes: concurrent and nonconcurrent replenishment. Nonconcurrent replenishment 
considers the shelf stacking of products at first replenishment (usually once per day), concurrent 
replenishment considers the shelf stacking of products during the day due to the fact that these 
products cannot be stacked during first replenishment due to the fact that the demand per 
timeslot is large than the available shelf capacity. Thus, nonconcurrent products can be stacked 
at the moment of delivery while concurrent products have to be placed in the backroom. 

Within the model of Broekmeulen and Van Donselaar (2012) each store has a basic available 
backroom storage capacity, which is already corrected for returnables such as returned 
packaging and remaining inventory of broken case packs. In addition, the backroom capacity is 
corrected for the storage of concurrent volume during the remainder of the review period by 
means of the parameter    . This parameter accounts for the fraction of total sales for a certain 
store within a certain timeslot which are sold from shelves requiring concurrent replenishments, 
i.e. where shelf capacity is insufficient for sales corresponding with this timeslot. Based on this 
capacity model, the top level’s store handling costs can be calculated based on an LP-
formulation. The calculated instore handling costs need to be outweighed by costs for the 
anticipated base model which contains two elements. 

First, the anticipated base model includes a generic parameter   which represents the average 
cost per drop and which is the same for all stores.  

Second, the model of Broekmeulen and Van Donselaar (2012) introduces smoothing tariffs 
which represents costs per roll container per timeslot. By changing the smoothing tariffs we can 
minimize the workload range by the assignment of additional costs to undesirable schedules for 
the distribution center. 

Thus, the model changes the smoothing tariffs in an iterative manner until a desired workload 
range for the DC is reached or when the additional costs for local stores become too high. In 
addition, the model of Broekmeulen tries to reduce transportation costs for a given set of 
schedules by combining multiple stores in one truck with a maximum of two stores per route. 
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Chapter 4: Analysis of beta(it) 
Chapter 3 of this report contains the qualitative description of the analytical model which will be 
used to determine a delivery schedule per store. In this section we focus on the calculation and 
analysis of the beta parameter specifically. This chapter starts with the discussion of the 
definition of beta in section 4.1, followed by an analysis of the input data in section 4.2. Section 
4.3 shows the results and section 4.4 describes an approach to approximate the results by 
means of readily available data.  

4.1 Definition 
This section considers the definition of the beta parameter. When we refer to “the beta 
parameter” this considers the parameter     which is included in the model of Broekmeulen and 
Van Donselaar (2012) defined as: 

   : fraction of total sales for store i during time slot t which are sold from shelves requiring 
concurrent replenishments, i.e. shelf capacity insufficient for sales corresponding with this time 
slot; 
 
Thus, Broekmeulen and Van Donselaar (2012) make a distinction between two product groups. 
 
First, a product group for which demand corresponding to a certain timeslot is smaller than shelf 
capacity. Thus, these products can be stacked during planned replenishments and are 
considered as nonconcurrent products. It is reasonable to assume that during this planned 
replenishment, the shelf capacity is fully stacked and the remaining inventory is placed in the 
backroom. 

Second, the model defines a product group for which the demand corresponding with a certain 
timeslot is larger than the product’s shelf capacity. These products require an extra 
replenishment moment during the timeslot and the products stacked during this extra 
replenishment are considered as concurrent products. 

Broekmeulen and Van Donselaar (2012) assume that the net available backroom capacity is 
already adjusted for empty roll-cages and remaining inventory after first replenishment, but not 
yet for the volume needed for concurrent replenishment. Instead, the net available backroom 
capacity is corrected for the fraction of the sales during the review period which is sold from 
shelves requiring concurrent replenishments. Hence,  

                    
     

     
 [1]  

The available backroom capacity needs to be respected for all stores and all timeslots for the 
nonconcurrent volume, as shown in [ITP 5] and [ITP 6] of the model of Broekmeulen and Van 
Donselaar (2012).  

This section considers the definition of beta(it). To acquire a value for store   and timeslot  , we 
will consider the fraction concurrent on an SKU level.      is defined as the random variable for 
the demand in consumer units for product   in store   and timeslot  .     is the shelf capacity 
for product   in store  . We assume that shelves are fully stacked after first replenishment. 
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The on-shelf inventory of fast-moving products has influence on the extent to which products 
can be stacked and thus on the instore operations. Considering the on-shelf inventory at the 
moment of first replenishment, store supervisors within Jumbo Supermarkten state that it is 
almost impossible to make a reasonable assumption on the on-shelf inventory just before first 
replenishment due to the fact that, for fast moving products, the on-shelf inventory depends on 
both the ratio between demand and shelf capacity and the moment of concurrent 
replenishment. 

Due to the fact that it is hard to make a reasonable assumption on the on shelf inventory, we 
will consider a lower bound and an upper bound to the fraction concurrent.  

In the following three paragraphs, we will consider two formulations of beta(it). The first 
paragraph considers the definition of the lower bound for the fraction concurrent for store   in 
timeslot  . The second paragraph considers the definition of the upper bound for the fraction 
concurrent for store   in timeslot  . Finally, the paragraph considers the choice for a definition 
and the interpretation at that definition. 

4.1.1 Lower bound 

This section considers a lower bound for the fraction concurrent of sales for store   in timeslot  . 
As described above, products require concurrent replenishment when the demand during a 
certain timeslot exceeds the shelf capacity of the corresponding product, i.e. when         . 
Hence, the situation where the on shelf inventory just before first replenishment is equal to zero 
maximizes the number of products that will be stacked by means of first replenishment. Thus, 
the number of products that need to be filled by means of concurrent replenishment is 
minimized and the lower bound for the number of products measured in consumer units that 
need to be filled by means of concurrent replenishment is equal to           

 . Subsequently, 
this leads to a definition of the lower bound of beta(it): 

    
                     

          
 

             
    

          
 [2] 

Where: 
     : Random variable for the demand in store   for product   in time block    
     : 1 if          in store   for product   in time block   in week   and 0 otherwise 
    : Shelf capacity in store   for product   

4.1.2 Upper bound 

This section considers the determination of the upper bound for the fraction concurrent of sales 
for store   in timeslot  . During timeslot   the demand for product   in store   is equal to the 
random variable       in consumer units and the shelf is fully stacked during first replenishment. 
Therefore, at maximum      consumer units can be stacked by means of concurrent 
replenishment. Hence, given a certain demand in consumer units       for store  , product   in 
timeslot   and a corresponding shelf capacity    , the upper bound to the number of products 
that need to be stacked by means of concurrent replenishment is equal to           where 
       when         . This leads to the definition of beta(it): 

    
               

          
 [3] 
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Where: 
     : Random variable for the demand in store   for product   in time block   
     : 1 if          in store   for product   in time block   in week   and 0 otherwise  
    : Shelf capacity in store   for product   

4.1.3 Choice of definition3 

The prior two sections considered the determination of a lower and an upper bound. The use of 
a lower bound for the fraction concurrent for store   and product   would yield a lower bound 

for the concurrent volume during the remainder of the review period            
     

     
. 

Subsequently, due to the fact that this concurrent volume for the remainder of the review 
period is deducted from the net available backroom capacity, the use of a lower bound for the 
fraction concurrent     would yield an upper bound for the available backroom storage capacity 
     for first replenishment items in store   following schedule   during timeslot  . However, due 

to the fact that      is used as a constraint for the backroom inventory at the end of timeslot  , 

the use of a lower bound value for     does not make sense. Instead, the use of an upper bound 
value for     yields a lower bound value for the available backroom capacity      for first 

replenishment items. 

For the sake of interpretation, we can assume the set of schedules with insufficient shelf 
capacity to be exactly the same during each timeslot. In this case, the approach makes a 
distinction between two categories of products: 

- One category of products for which the demand for the remaining review period is 
included in the backroom; 

- One category of products for which it is either possible to stack the demand for the 
remaining review period in the shelves, or where exceeding products can be placed in 
the backroom;  

Regarding the correlation of the demand of products in subsequent timeslots, it is reasonable to 
assume that the set of products with insufficient shelf capacity remains more or less the same 
throughout the planning period. 

4.2 Data 
This section addresses the nature of the input data which is used for the analysis. 

4.2.1 Sample size 

Prior to this analysis, we used a small sample of three stores (low/medium/high shelf pressure) 
to gain an estimation of the pattern to be expected. The results for the three stores gave reason 
to expect a beta parameter which is dependent on turnover pressure.  

Hence, we initially expect the beta parameter to be negligible for stores with a relatively low 
shelf pressure and a beta parameter which is linearly increasing with shelf pressure after a 
certain cutoff point. For this analysis we will therefore make use of a larger subset of 19 stores 
where these stores are equally distributed between the store if the subset with medium shelf 
pressure and the store with a large shelf pressure. 
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Data is available for five weeks; stores are open six or seven days per week. However, to be able 
to compare beta-parameters based on their average value, especially for section 4.4.1, we will 
neglect the demand for Sunday openings and compare the stores on the demand during the first 
six days of the week in the remainder of the report. Eventually, we would like to do the 
comparison twice to avoid this negligence, once for stores with six opening days and once for 
stores with seven opening days, but the sample size is too small to do this. 

4.2.2 Demand data 

The demand data that is used for the calculations is point-of-sales data measured in consumer 
units. The demand data for all stores in the sample set considers demand data which excludes 
promotions. It is not reasonable to include promotions, since usually shelf capacity is 
temporarily enlarged for weeks in which promotions take place. In the point-of-sales data, the 
consumer unit for beer is defined as one bottle. 

4.2.3 Shelf capacity data 

The source of the shelf capacity data used for the calculation of the beta parameters is the SAP 
system which is used for automated store replenishment. This system generates an order advice 
based on demand data and shelf capacities. The result of the system should provide store 
managers an incentive to update the shelf capacities: not setting the shelf capacities too low 
(which results in too many orders) and not too high (which results in too much backroom 
inventory). Given this feedback loop, we initially expect the quality of the data to be of sufficient 
quality 

Data check 
To perform an extra check for the quality of the data, we take a sample to verify whether the 

SAP shelf capacity    
    for store   and product   is consistent with the actual instore shelf 

capacity    
       for store   and product  . The actual shelf capacity is gathered for the stores in 

the sample set by telephone. One (franchise) store did not want to participate, for the 
remaining 18 stores the shelf capacity was checked for the three products which have the 
highest contribution to the beta parameter, i.e. the three products within store   for which 
                had the largest value. Consequently, we can calculate the shelf index 
parameter      for each of the 54 observations: 

     
   
      

   
     [4] 

This represents the actual shelf capacity relative to the SAP shelf capacity for store   and product 
 . Characteristics of these 54 shelf index parameters are shown in table 3. As shown in the table, 
we differentiate between indexes for products in stores for which the actual shelf capacities are 
equal to shelf capacities in SAP for all three products which were checked, and for indexes for 
products in stores where this is not the case. 
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 All stores Products in stores where  

   
       

       for    

Products in stores where  

   for which    
       

        

Frequency 54 12 42 
Average 2.16 1.00 2.79 
Standard deviation 2.53 0.00 2.91 
Coefficient of variance 1.17 0.00 1.05 
Median 1.10 1.00 1.88 
Min 0.17 1.00 0.17 
Max 13.71 1.00 13.71 

Table 3: Data description of     , for 3 products with largest contribution beta(it), for 18 stores 

Based on the sample, actual shelf capacities are on average more than twice as high as the shelf 
capacity in SAP. One of the products even showed a shelf capacity which is almost 14 times as 
high as the shelf capacity registered in SAP. Thus, the actual shelf capacity clearly deviates from 
the shelf capacities which originate from the SAP system. Thus, it is relevant to know whether 
these results eventually lead to a change in beta(it). To compare the values of beta(it) across 
different stores, we define    as the average value per store for beta(it) within the planning 
horizon  , hence: 

   
      

 
 [5] 

Table 4 shows a data description of the index parameter   
           

    per store, which 
represents the average beta parameter after adjustment of the three products’ shelf capacities 

  
         relative to the average beta parameter based on the original SAP shelf capacity data 

  
   . As can be seen, the value for gamma(i) based on the original SAP shelf capacities 

decreases with 14 % on average after adaption of the three products’ shelf capacities. 

Furthermore, we can see that the minimum value for   
           

    is equal to 0.52 with a 
maximum value of 1.17. In other words, the checking of the shelf capacity of only three very fast 
moving products per store leads to a reduction of gamma(i) with 48 %. 

 All stores Stores where  

   
       

       for    

Stores where     

for which    
       

       

Number 18 4 14 
Average 0.86 1.00 0.82 
Standard deviation 0.18 0.00 0.18 
Coefficient of variance 0.21 0.00 0.22 
Median 0.88 1.00 0.78 
Min 0.52 1.00 0.52 
Max 1.17 1.00 1.17 

Table 4: Data description for   
           

     

The results show clear difference for the values of gamma(i) prior to and after adaption of the 
three products’ shelf capacity values. Regarding these results, it is relevant to consider whether 
a decrease or an increase of gamma(i) eventually influences the choice of a delivery schedule for 
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a store. To test for the relevance of the difference between   
         and   

   , we consider the 

multiplication of the difference between   
         and   

   with the average daily demand, 
relative to the backroom capacity. Hence, we formulate a backroom fraction    , 

    
   

           
       

    
  [6] 

where    is the average daily demand for store   measured in containers and      represents 
the backroom capacity for store  . Thus, the comparison is done based on the assumption of 
having a daily delivery for each store which is reasonable as will be shown in table 14 . Hence, 
this will estimate the fraction of the backroom that is wrongly estimated by using the SAP data 
for the three products instead of actual shelf capacities. Increasing the assumed review period, 
will cause an increase for     .  

To make a reasonable conclusion on the result of shelf capacity data, we introduce an arbitrary 
threshold value of     . When     exceeds this value, we consider the difference between 

  
         and   

    not to be negligible.  

 
Figure 11: Cumulative number of stores versus     

If the values for     would be negligibly small, it is reasonable to continue with the shelf 
capacity data which is adapted for the three products. However, the results in figure 11 show 
that 1 of the 18 stores exceeds the threshold value of      and that two stores have values 

which approximate the threshold value of 0.05. Hence, the difference between   
         and 

  
    comprises a reasonable fraction of the backroom.  

Thus, the effect on the schedule choice is relatively large although we have limited the sample 
size to only three products. To estimate what the effect is if we would extend the sample size of 
three products for which we checked shelf capacities, we extrapolate the results for the first 
three products with the largest contribution to definition A to the first twenty products with the 
largest contribution to definition A. Hence, we define a new parameter       which is the 
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average shelf index parameter per store for the three products for which the shelf capacity was 
checked. Hence: 

     
 

 
      

 
    [7] 

Where products         are the three products for which the shelf capacity was checked and 
possible adapted. We can extrapolate the results per store by multiplying the shelf capacity of 
the first twenty products with the largest value for                 (excluding the first three 
products) by the index parameter      and consequently we can recalculate gamma(i) after 

adaption of the shelf capacity of these twenty products   
          to check the effect of the 

extrapolation of results.  

 All stores Stores where  

   
       

       for    

Stores where     

for which    
       

       

Number 18 4 14 

Average 0.64 1 0.53 

Standard deviation 0.41 0 0.41 

Coefficient of variance 0.65 0 0.77 

Median 0.55 1 0.37 

Min 0.05 1 0.05 

Max 1.33 1 1.33 

Table 5: Data description for   
            

    

As shown in table 5, the multiplication of the shelf capacity of the first twenty products with the 
largest contribution value for                 with the index parameter leads, on average, to a 
further decrease of the parameter of gamma(i). With an average decrease compared to the 
initial gamma(i) of 36 %, these results show that extrapolation of the results found for the first 
three products per store leads of a further decrease of gamma(i). However, although these 
results give evidence to state that the data quality is relatively low and to state that the 
influence of this data quality is large, there are three reasons to mitigate this conclusion: 

- First, the sample size of three products is relatively small. For example, one of the three 
products for store 14 has a shelf index parameter      which is equal to      . It is not 
likely that this effect is representative for the remainder of the products of that store. 

- Second, it is reasonable to assume that fast moving products have more relative 
deviation in shelf capacities than slow(er) moving products, which makes the 
extrapolation contestable. 

- Third, we consider a store where all shelves have sufficient actual shelf capacity to cover 
the daily demand for that product in that store. In this store, it is reasonable to assume 
that the products with the largest contribution to beta(it) are precisely those products 
for which the actual shelf capacities deviates from the shelf capacities in SAP. 
Concluding, the selection of products for which the shelf capacity is checked can be 
biased due to the fact that these products have a high contribution to beta(it) can be 
caused by the inaccurate SAP shelf capacity itself. This limits the extent to which it is 
reasonable to extrapolate the shelf capacity of the first three products to the first 
twenty products. 
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4.2.4 Conclusion 

In first instance, we assumed the SAP shelf capacity data to be of relatively good quality due to 
the fact that the store has an incentive to update the shelf capacity:  a SAP shelf capacity which 
is higher than the actual shelf capacity should lead to an automated order advice which is too 
high, which subsequently leads to excessive leftovers. This should provide an incentive to stores 
to update the shelf capacity. When the SAP shelf capacity is lower than the actual shelf capacity 
this should lead to a too high order frequency for first replenishment. This increases handling 
costs and this should provide an incentive to stores to update the shelf capacity. Hence, shelf 
capacity is used to perform an instore logistical optimization.  

However, if sales volumes for extremely fast moving products are constantly larger than or at 
least quite near to the actual shelf capacity, the extent to which order advancement and 
workload smoothing is possible is limited since the automated ordering system will always order 
the projected demand during the review period. 

Furthermore, the benefit for the store of a smoothed workload is rather small due to the fact 
that for large volumes, ordering more at once does not create a significant increase in 
productivity since volumes are already large and setup costs (such as costs related to searching 
for the right location to stack a certain product) are negligible. In other words, the store does 
not have a significant incentive to adapt shelf capacities for extremely fast moving products. 

Hence, shelf capacity data quality is not as good as expected and shelf capacities in SAP are most 
likely to deviate from the actual shelf capacity for fast moving products. This conclusion has two 
implications: 

- First, it has an implication for the store replenishment in general. Within the automated 
ordering system, shelf capacity data is used for logistical optimization within the store 
and smoothing of the workload within the store. Hence, the fact that this smoothing 
does not take place within the store will have consequences on an aggregate level. 
Improvement of quality of the data can cause a more leveled workload not only for the 
store, but for the transportation function and for the distribution centers as well. 

- Second, the data inaccuracy influences the outcome of this research. 

Data analysis showed that data quality is insufficient. However, we continue with the shelf 
capacity data after adaption of the three products’ shelf capacities, for three reasons: 

- To start with, it is reasonable to assume that for fast-moving products the shelf capacity 
data is more inaccurate then for slow moving products due to the difference in 
incentives for the store to update the shelf capacity. This reduces the data quality issue 
to a limited set of products. 

- Second, after adaption of the shelf capacities, only 2 of a total of 18 stores showed an 
increase of gamma(i) while the remainder of the values of gamma(i) showed a decrease 
or did not change. Furthermore, the increase for the two stores was relatively small 

where 
  
        

  
               . Hence, it is reasonable to state that the gamma(i) 

parameter after adaption of the three products’ shelf capacities provides an upper 
bound of the actual gamma(i). Thus, the gamma(i) parameter is likely to overestimate 
the fraction concurrent but unlikely to underestimate the fraction concurrent. 
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Considering the model formulation of Broekmeulen and Van Donselaar (2012), the 
overestimation of gamma(i) will lead an overestimation of the requirement for 
backroom capacity which can subsequently lead to an increase of costs. Thus, although 
the data inaccuracy can lead to a cost increase, it will not result in an impossible 
schedule for a store. 

- Third, due to the fact that it is not practically possible to check all actual shelf capacities, 
the SAP shelf capacity data is the best data source available. 

Concluding, although there are limitations to the use of the data, we will continue with the shelf 
capacity data after adaption of the three products’ shelf capacities in the remainder of this 
report, with a sample set of 18 stores. For further research it is recommendable to extend both 
the number of stores and the number of products. 

4.3 Results 
In the prior sections, we showed the influence of the decrease or increase of gamma(i) by 
means of an adaption of the SAP shelf capacity data. This section considers the results for the 
parameter beta(it) which is split in four paragraphs for the sake of structure. The first paragraph 
considers whether beta(it) indeed has influence on the schedule as such. The second paragraph 
considers the seasonality of the parameter. Paragraph three considers the sensitivity of the 
measure and finally, paragraph four concludes this section. 

4.3.1 Influence of beta(it) 

This section considers the influence of beta(it) on the eventual schedule choice. When the 
parameter is infinitely small, the parameter is unlikely to influence the choice of a store for a 
schedule. In contrast, when beta(it) is equal to one, this influence is large. To consider the 
influence of beta(it), a new parameter is introduced: 

     
     

    
 [8] 

Where    is the average daily demand per store and      represent the backroom capacity per 
store. The parameter represents fraction of the backroom capacity that is used for storage of 
concurrent products, if we assume a review period of one day. This parameter gives an 
indication of the concurrent volume relative to the backroom capacity and hence, an indication 
of the influence on the choice of schedule. As for    , we will make use of an arbitrary threshold 
value of 0.05. Values for      which are larger than 0.05 can be assumed to be negligibly small 
and values larger than 0.05 can be assumed not to be negligible. 

When we check this parameter for the 18 stores in the sample set,      has an average value of 
0.054 with a standard deviation of 0.075. The maximum value is 0.24 and the minimum value is 
0.002. Hence, with an average that is larger than the threshold value of 0.05 and a maximum 
value of 0.24 this supports the conclusion that beta(it) is likely to have influence on the choice of 
a delivery schedule. 
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4.3.2 Seasonal effect of beta(it) 

To compare the effect of the seasonal demand data on beta(it), we define a new parameter     
which represents the average beta(it) parameter for timeslot  . Hence: 

    
      

 
 [9] 

where   is the number of stores in the subset. Figure 12 shows     for beta(it) as defined in 
formula [9]. Values for     vary between 0.02 and 0.10 which shows a large variation in the 
parameter value per timeslot. 

 

Figure 12: SE(t) for each day of the week, averaged over all 18 stores 

4.3.3 Sensitivity analysis 

This section considers a sensitivity analysis which investigates the sensitivity of beta(it) to shelf 
capacity data. To explore this sensitivity, we will multiply all shelf capacities with a fraction   
and then compare the result with the results for    , based on the change in the average 
gamma(i) across all stores    , and the change in the average standard deviation of beta(it) across 
all stores,        . Due to the fact that for most of the products the average demand is lower 
than the shelf capacity, we expect that if we decrease shelf capacities with   %, the beta 
parameter will increase with at least   %. In reverse, we expect that if we increase shelf 
capacities with   %, the beta parameter will decrease with at least   %.  

                            

Δ    Δ        Δ    Δ        Δ    Δ        Δ    Δ        Δ    Δ        

66.0% 44.8% 26.4% 14.6% 0.0% 0.0% -17.0% -9.6% -32.7% -23.2% 

Table 6: Comparison of gamma(i) and sigma(beta(it)) after a change in shelf capacities 

As can be seen in table 6, this indeed is the case. As for most supermarkets in the Netherlands, 
sales volumes are high and for most products demand is large relative to shelf capacity. Thus, a 
small decrease (     ) already causes a large increase of beta(it) due to the fact that a large 
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number of products does have insufficient shelf capacity. For a small increase (     ), a 
number of fast moving products now does fit in the shelf capacity which leads to a drop of 
beta(it). Apart from the sensitivity to aggregate changes, section 4.2.3 showed that the change 
of the shelf capacity of three fast-moving products causes a 14 % decrease on average of   . As 
discussed in paragraph 4.2 we will continue with the data after adaption of the three products’ 
shelf capacities, although beta(it) is sensitive to this data quality. 

4.3.4 Conclusion 

Concluding, we have drawn several sub conclusions in this section: 

- Beta(it) comprises a reasonable fraction of the backroom and hence, the parameter is 
likely to have influence on the choice of schedule; 

- Beta(it) shows a clear seasonal pattern, caused by the seasonal effect that is present in 
the demand data; 

- Beta(it) is sensitive to changes in shelf capacities, both on aggregate level as on SKU-
level. 

We will continue with the sample set of 18 stores with a possibly adapted value for the three 
products for which the shelf capacity was checked. 

4.4 Approximation  
In the prior sections, we discussed the calculation and use of beta(it). However, the extensive 
calculation comes has three disadvantages:  

- The calculation requires demand data. The combination of more than 300 stores, about 
30.000 SKU’s and multiple weeks of data, leads to a very large data set which is too large 
to export via the regular data export process within Jumbo Supermarkten. A data 
request is needed, and the extra delay of up to one week that is caused by this extra 
step is a direct delay in the schedule development process. 

- The calculation requires shelf capacity data. As discussed in section 4.2, shelf capacity 
data quality is not sufficient and it requires much time to check a sample set of products 
for all stores. 

- The calculation of beta(it) parameters takes a considerable amount of time due to the 
fact that two large databases need to be combined. 

Hence, although the effectiveness of the calculation of beta(it) is sufficient, the efficiency 
considering the use of resources such as time and computational power for determining the 
parameter leaves room for improvement. This section aims to approximate beta(it) by means of 
readily available data, in order to approximate beta(it) of a large set of stores by means of 
readily available data. We will consider two approximations: 

- Gamma(i): Average value per store for beta(it) within the planning horizon   
- Gamma(i)*Alpha(it): average value per store for beta(it) within the planning horizon   

multiplied by a seasonal index 

The definition of the approximating parameters will be treated in more detail in the following 
sections. 
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4.4.1 Approximation by means of Gamma(i) 

This section considers the approximation of beta(it) by means of    as formulated in formula [5]. 
The parameter represents the average per store of     regarding the planning horizon  . As 
shown earlier in this report, the beta(it) parameter shows a clear seasonal effect throughout the 
week. Although a seasonal effect is present in the data it needs to be considered whether it is 
accurate enough to approximate beta(it) with a parameter that is not time-dependent. The 
difference between gamma(i) and beta(it) is relevant if the difference between the two 
parameters beta(it) and gamma(i) in combination with the expected delivery volume comprises 
a reasonable fraction of the backroom capacity. Hence, we apply the same logic as for formula 
[8] by considering the fraction of the difference between gamma(i) and beta(it) multiplied with 
the average demand     relative to the backroom capacity. 

     
            

    
 [10] 

As can be seen in table 7, the average value of      for all stores and all timeslots is equal to 
0.04.  Although this is below the threshold value of 0.05, the maximum value of 0.80 and the 
standard deviation 0.11 give reason to expect a regular exceedance of the threshold value. Data 
analysis shows that 13 % of all measurements (for all   and all   in the subset) exceed the cutoff 
value.  

Calculation of the maximum value of      per week per store, yields an average value across all 
stores equal to 0.12. Hence, although on average the approximation of     by means of    can 
be assumed to be negligible, the maximum value for      and the average of the maximum 
values per store show that approximation of     by means of    is contestable. 

Average Median Standard deviation Min Max 

0.04 0.01 0.11 0.00 0.80 

Table 7: Data description for       

4.4.2 Approximation of Beta(it) by means of readily available data 

Given the reasons mentioned in the introduction of this paragraph, we would like to 
approximate beta(it) by means of a store-dependent average parameter    (which can be 
acquired by a small sample size of SKU data or by aggregate measures) possibly multiplied by a 
seasonal factor    , as is shown in formula [11]. 

           [11] 

In this section, we will consider the approximation of    and     by means of readily available 
data. 
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Gamma(i) 
This section considers the approximation of    by means of a regression analysis on readily 
available data to increase the efficiency of the process. At first instance, turnover pressure 
defined as the weekly turnover in Euros per square meter store floor area was expected to be a 
good predictor of   . However, it can be seen in appendix vi that no linear relationship between 
turnover pressure and    can be found. Data analysis showed that in most stores in the sample 
set, the products with the largest sales quantities relative to the shelf capacity were beer, coke 
and sodas. Hence, appendix vii shows a potential relationship between the turnover share for 
beer, and for coke and soda. To approximate gamma(i), we conduct a linear regression analysis 
on the share of beer and soda in the total turnover per store. As can be seen in appendix viii, the 
approximation by means of the turnover share of beer and the turnover share for coke and soda 

provides a relatively good fit with an      
  equal to 0.502. Introduction of the turnover pressure 

as an additional predictor in the model decreases both R square and the Adjusted R square. This 
implies that shelf pressure is, in contrast to what was expected, not a good predictor of 
gamma(i).  

Application of regression result to the sample set of 122 stores, this results in the data 
characteristics as shown in table 8. 

Average Median Standard Deviation Min Max 

0.056745 0.054798 0.023669 0.012308 0.156546 

Table 8: Data characterization of gamma(i) 

 
Figure 13: Cumulative number of stores versus BRF(i) 

To put the values of gamma(i) in perspective, figure 13 shows the cumulative number of stores 
versus two definitions: 

-      
     

    
 where    is defined as the average demand for store   during the planning 
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-      
     

    
 where    is defined as the average demand of the timeslot during planning 

horizon   with the highest  average demand per timeslot for store   

What can be seen in the figure is that for about 70-80 % of the stores, if we use a threshold 
value of 0.05, the fraction concurrent is not expected to have influence on the choice of 
schedule. However, for the top 20-30 % the value is significantly large to have an impact on the 
eventual schedule choice. 

Alpha(it) 
Given the relatively good approximation of gamma(i), we would like to improve the 
approximation by correcting the (approximation of) gamma(i) for the seasonal effect which is 
present in the data. As specified earlier, alpha(it) resembles the seasonal index for gamma(i). To 
approximate the seasonal effect of beta(it), we will assume that the seasonal pattern is defined 
by the turnover distribution over the week. Although this considers the total consumer turnover 
per day instead of only the dry groceries turnover per day, it is reasonable to assume that the 
share of dry groceries turnover in the total turnover differs per store but, for a certain store, 
does not differ during the week. Hence, the seasonal pattern     is dependent on this 
distribution, while we will consider the approximation of the gamma parameter where: 

    
          

 
          

  

 [12] 

To compare the seasonality of beta(it) and alpha(it), we introduce two parameters     and     
which respectively represent the seasonal effect of Beta(it) and Alpha(it) where   represents the 
number of stores and   represents the planning horizon. 

    
      
        

   

 [13] 

    
     

 
 [14] 

Figure 14 shows     and    . As can be seen, the seasonal pattern for the two parameters is 
similar but the amplitude differs due to the fact that beta(it) is mainly based on fast-moving 
products which show an enforced seasonal effect. 
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Figure 14:     and     

The difference in the amplitude of the seasonal parameters leads to a bad approximation of 
beta(it). In order to correct for the enforced seasonal effect, we will test whether a correction of 
the original alpha(it) for the amplitude enhances the approximation. Hence, we correct the 
amplitude of the turnover distribution by means of an overall average ratio per timeslot   of     
relative to    . This parameter is time-dependent but not store dependent and ultimately leads 
to an estimation of alpha(it) for each store and for each timeslot which is equal to: 

    
          

 
          

  

  
   

   
  [15] 

However, a time-varying estimation based on the actual value of gamma(i) and the estimated 

values for alpha(it)              eventually showed values for BF(i) which are on average equal 
to 0.05, with a maximum value of 0.35. Hence, compared to the results that we acquired earlier 
for gamma(i), the introduction of an additional parameter does not improve the solution due to 
the fact that the ratio between     and     shows much variation per store and due to the fact 
that the amplitude correction does not guarantee the fact that        .  

4.5 Conclusion 
Due to the fact that the introduction of a seasonal pattern does not yield improvements of the 
estimation of beta(it), we will continue with the approximation of beta(it) by means of 
gamma(i). Approximation of alpha(it) can be considered as a topic for future research.  

Subsequently, we will approximate gamma(i) by means of the regression analysis on the store 
dependent turnover share for beer and the store dependent turnover share coke and soda. 
Concluding, gamma(i) will be approximated by means of the regression formula: 

                                                                 [16] 
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Chapter 5: Numerical study 
This chapter contains the numerical study of the model. Section 5.1 covers the selection and 
analysis of input data. Section 5.2 is aimed at checking the assumptions of the model. Section 
5.3 analyses the performance of the model. Section 5.4 considers a sensitivity analysis and 
section 5.5 adresses the verification and validation of the model. Section 5.6 specifically 
considers the analysis of the parameters  ,    and handling costs. Finally, section 5.7 concludes 
this chapter. 

5.1 Input analysis 
Chapter 3 specifies the model of Broekmeulen and Van Donselaar (2012). This section considers 
the selection and analysis of the input data required for this model.  

5.1.1 Sales data 

Basis for the model is the estimation of the expected delivery volume. To calculate this volume 
for store   in time slot   for schedule  , Broekmeulen and Van Donselaar (2012) assume that the 
delivery volume is equal to the sum of the consumer sales volumes during the review period 
measured in roll containers. However, data on these sales quantities does not exist as such, due 
to the fact that consumer demand is realized in consumer units and existing historical delivery 
volumes in containers are realized per delivery moment instead of per timeslot.  
 
Concluding, the expected sales volume in roll containers needs to be approximated by 
combining these two data sources. Due to the recent development of Jumbo Supermarkten the 
company has grown with a large number of new stores that entered the Jumbo formula. 
Therefore, we will only include “stable” stores that are delivered by DC South and which have 
delivery data for one year (stores which have demand data for at least 49 weeks) starting at 
week 21 of 2011. To estimate the expected sales volumes, we have to relate the sales in 
consumer units with the container quantities. We will first describe the acquisition of the input 
data in the following paragraphs. 

Consumer demand (Consumer units) 
Consumer demand in consumer units can be expressed in several levels of aggregation:  

- Per product group: either dry groceries, fresh produce or frozen products; 
- Per presentation group: e.g. baby food or coffee milk; 
- Per products: e.g. Becker Hamburger 12ST. 

Ultimately data per product group is required, but within Jumbo Supermarkten data is only 
available either per presentation group or per product. Thus, aggregation is required. If we can 
use presentation group data for this aggregation, this saves computation time. However, this 
assumes that the quality of the underlying SKU data is sufficient and a check is required to 
confirm this quality. The data quality check is elaborated in appendix ix from which we can 
conclude that the data quality on an SKU level is relatively good after exclusion of other product 
groups than the dry groceries product group and exclusion of the “restgroep” presentation 
group. Subsequently, we can use the presentation group data as a basis to acquire the number 
of consumer units per product group per time slot   for store  . 
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Container volumes (Containers) 
Container volumes are registered per delivery moment, but can be aggregated to weekly 
container volumes. Weekly aggregated container volumes are shown in figure 15, where the 
data in the figure is running for one year, starting at week 21 of 2011. The figure clearly shows a 
number of peaks such as Christmas and New Year in week 51/52 and Easter in week 14. The 
variation coefficient is more or less constant through the year. 

 
Figure 15: Average and standard deviation of the weekly demand for all Jumbo stores in the subset 

Approximation of sales volumes 
Now that both the container quantities and the consumer sales quantities are known, we can 
combine these data sources to approximate the expected sales volumes by dividing the sales 
volumes in consumer units by a store-dependent number of consumer units per container.  
 
To determine this number of consumer units per container, the yearly demand per store in 
consumer units is divided by the yearly number of containers. This results in an average number 
of consumer units per container equal to ''''''''''. Given the realization of an average number of 
'''''''''' case packs per container this implies ''''''''' consumer units per case pack. Given the fact 
that experts on Jumbo Supermarkten’s automated order system expected a value between '' 
'''''''' '' in advance, this is realistic. The number of consumer units per container per store shows 
limited variation across all stores in the subset, with a coefficient of variation of '''''''''. Given the 
allocation of container volumes to week days, the following step is to forecast sales volumes for 
the period for which the schedule that is to be developed will hold. However, for now we will 
leave the forecasting step out of scope. We will assume a stationary demand and develop a 
schedule for the period of one year, based on available data for one year. 

5.1.2 Distance 

Within the algorithm as developed by Broekmeulen and Van Donselaar (2012), an estimation of 
the actual distance is calculated based on the Euclidian distance. This is calculated by the 
Haversine formula multiplied by a multiplication factor 1.34 which is a reasonable 
approximation of the average of actual distances divided by the Euclidian distances between 
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two random locations within the Netherlands. The distance is used to estimate the expected 
actual transportation costs. 

5.1.3 Beta parameter 

Beta(it) was discussed extensively in chapter 4. As was concluded in that chapter, we will 
continue with an approximation of beta(it) by gamma(i), which is subsequently approximated by 
turnover share beer and turnover share coke and soda. 

5.1.4 Backroom capacity 

The backroom capacity is defined in the model as the available backroom capacity (excluding 
returnables such as empty roll cages and remaining inventory after first replenishment) in store 
  during timeslot  . Within Jumbo Supermarkten, separate capacities are defined per store for all 
product groups. Furthermore, the company defines a fixed inventory per product group which 
accounts for (regular and promotional) leftovers. The predefined fixed inventory for dry 
groceries is deducted from the original backroom capacity for dry groceries. This is used as the 
net available backroom capacity which is input for the model. 

5.1.5 Drop cost 

To represent the costs per drop, the parameter   considers a generic estimation of the costs per 
drop for all stores. Based on a financial cost realization, costs per delivery by means of charter 
trucks equal ''''''' '''' 

5.1.6 Truck capacity 

Jumbo Supermarkten uses trucks with a range of capacities. To cope with the heterogeneity of 
the truck fleet, a fixed truck capacity is assigned per store. Hence, we assume that the loads for 
a certain store are always delivered by one truck type.  

''''''''''' ''''''''''''''''' ''''''''''''''''''''''''' ''''''''''''''''''''' '''''''' '''''''''''''''''''''  
''''''''''''''''' '''' '''''''''''''' 

''''''''''''''''''''''''' ''''''''''''''  
''''''''''''''''''' '''' '''''''''''''' 

''''' '''' ''''''' 

'''''' '''''' '''''' 

''''' '''' '''''' 

'''''' '''''' ''''''''' 

''''' '''''''''' '''''''''' 

''''' '''' '''''' 

''''' '''' ''''''' 

''''' '''' ''' 

''''' '''' '''''' 

'''''' '''''''' '''''''''' 

Table 9: Frequency table of the deliveries per week 

As shown in table 9, truck capacity can roughly be divided in two capacities: ''''''''''''' (which we 
will all consider as ''''') and ''''' with a total of '''''' % share in the total capacity. Stores which are 
normally delivered by a large capacity truck will have a store dependent capacity equal to '''''.  

As can be seen in data analysis, there are two reasons to deliver a store by a large capacity 
truck. The store can either have relatively large volumes which save on the delivery frequency, 
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or the store can have a relatively large distance to the distribution center which (in combination 
with another store) can lead to a large saving on transportation costs. The stores that will be 
delivered by a large capacity truck are selected based on the criterion of having more than two 
deliveries per week by a truck with large capacity based on previous schedules. This leads to a 
total of 25 stores within a total of 122 stores in the sample size. 

5.1.7 Further parameter estimates 

Further parameter estimates were based on present data and/or determined in consultation 
with experts within Jumbo Supermarkten. 

Parameter Value Origin 

Truck speed [Km/Hr] '''''  Based on average realized truck speed 
KM transport cost [€/Km] ''''''''  Based on cost realization 
Hourly transport cost [€/Hr] ''''''  Based on cost realization, combined with setup 

costs/day 
Load time [Hr] ''''''''' Based on current plan value 
Unload time [Hr/RC] ''''''''''''' Based on current plan value 
Handling cost fulltime [€/Hr] ''''' Based on available data 
Handling cost stackers [€/Hr] '''''''' Based on available data 
Extra drop cost multiplier [-] ''' Parameter setting 
Longitude DC [-] '''''''''' Based on geographical location 
Latitude DC [-] ''''''''''''' Based on geographical location 
Max smoothing tariff [€] ''''' Parameter setting 
Target MAD workload [RC] '''''''' Parameter setting 
Table 10: Parameter setting 

The maximum smoothing tariff is set very high to be able to compare solutions with a 
comparable DC load. These parameter settings will be used as input for the remainder of the 
report. 

5.2 Model assumptions 
In this paragraph we will check the assumptions of the model of Broekmeulen and Van 
Donselaar (2012). 

5.2.1 Demand is equal to the sum of demand during review period 

The model of Broekmeulen and Van Donselaar (2012) assumes that the expected delivery 
volume is equal to the sum of the demand during the review period. It is possible to check this 
assumption by comparing the calculated quantity with the realized container quantities for the 
current schedule. This result is shown in figure 16, where the left axis resembles the average 
difference across all measurements between the calculated expected delivery volume based on 
consumer demand and the realized delivery volumes. The right axis shows the relative average 
distance in percentages compared to the average number of containers across all 
measurements. 

The figure had two important attributes. First, the shape of the graph provides evidence for 
order advancement in the store. Thus store managers order relatively more at the beginning of 



 

 

35 

 

the week to balance the workload for instore operations. Second, the average difference is 
considerable compared to the average expected delivery volume of about 37 containers. 
Although the difference limits the validity of the model, we will continue under the assumption 
that the expected delivery volume is equal to the sum of the demands during review period. 

  

Figure 16: Average nominal and relative difference 
between actual delivery volumes and calculated 
delivery volumes 

Figure 17: Frequency diagram of all the 
coefficients of variation per store, per day 

5.2.2 Deterministic quantities 
In the model of Broekmeulen and Van Donselaar (2012), delivered quantities are assumed to be 
deterministic. Figure 17 displays the frequency diagram of the coefficient of variation of the 
consumer demand in consumer units, per day for all stores in the subset (n=122). As can be 
seen, the daily demand during the year has a relatively low variation since the highest 
frequencies occur at a coefficient of variation value of ''''''''' and '''''''''. Given this result, we 
conclude that it is legitimate to approximate demand as being deterministic. However, inclusion 
of variability in the model remains an important aspect for future research. 

5.2.3 At most two deliveries per truck route 

As mentioned in the model description, the model assumes a maximum of two deliveries per 
truck route based on Gaur (2004). Figure 18 shows the current route composition within Jumbo 
Supermarkten. Of all routes conducted on a weekly basis, only '''''' '''' of all routes that deliver 
only dry groceries contain three stores in that route.  

 
Figure 18: Frequency diagram for route composition 
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Regarding the fact that this research is limited to dry groceries, the assumption of having 
clusters with at maximum two stores seems reasonable and we will continue under this 
assumption. As can be seen in the graph, the assumption of maximum two routes is less 
plausible for the other two product groups, fresh produce and frozen products.  

5.2.4 Close proximity  

The model assumes close proximity of the stores to the DC, such that loading at the DC and 
unloading at the store always takes place within the same time slot. The stores included in the 
subset have coordinates as shown in figure 19 which brings forward the outline of the south of 
the Netherlands. As is clearly visible, most stores are relatively close to the distribution center. 

 
Figure 19: Geographical location of stores, based on geographical coordinates  

When we assume a time window of 12 hours per day, this leads to the time per time block as 
indicated in figure 37 in appendix x. However, this only includes driving time while the loading 
time at the DC and unloading time at the store is relevant as well. We approximate this by 
assuming a load time and unload time as described in the parameter setting. This results in 
figure 38 in appendix x. It can be seen that the assumption of departure from the DC and arrival 
at the store within one time block is reasonable if at maximum two time blocks per day are 
used. 

5.2.5 Fixed truck capacity per store and ample trucks available 

The approach of Broekmeulen and Van Donselaar (2012) assumes a fixed truck capacity per 
store. As can be seen in table 11, '''''''''' '''''''' '''''''' of the stores are delivered by trucks of more 
than one type of capacity if we consider only dry groceries deliveries in a one week schedule. 
Hence, the approximation by means of a fixed capacity is arguable. Experts on transportation 
indicate that usually the availability of trucks is not a problem, which makes the availability of 
ample trucks a reasonable assumption. 

'''''''''''''' '''' ''''''''''''''''' ''' ''' ''' ''' ''' 

'''''''''''''''' ''''''''' '''''''' '''''''' '''''''' ''' 

Table 11: Fraction of the stores delivered by a certain number of different capacities within one week 
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5.2.6 Expected sales are independent of the delivery schedule  

The results in figure 16 showed that order advancement has influence on the realized delivery 
volume. The fact that store managers order more than the projected sales during the review 
period at the beginning of the week, implies that the presence of more inventory will lead to a 
fill rate which is higher at the beginning of the week than at the end of the week. However, 
given the relatively small fraction of out-of-stocks during the week and the use of an automated 
store ordering system which makes use of an adapted version of an (s,nQ)-policy, it is 
reasonable to assume that the fill rate is fixed and constant during the week and that the 
influence of the delivery schedule on the expected sales is negligible.  

5.2.7 Backroom capacity 

The model makes two assumptions regarding the backroom capacity; 
- The backroom capacity is respected at the end of a time slot; 
- Net available backroom capacity is already adjusted for empty roll cages and remaining 

inventory after first replenishment. 
The first assumption guarantees that containers for example, do not remain in the stores’ 
corridors overnight. This assumption is realistic as long as time slots are large enough.  

The second assumption implicitly assumes that the returnables backroom capacity available is 
constant and is not being influenced by the delivery schedule. With a capacity demand for 
returnables which is equal to about 20 percent of the original delivered number of containers, it 
is not possible to neglect the influence of returnables. We can conclude as well that it is not 
desirable to collect returnables at each delivery since the collection of returnables comes with 
extra costs as indicated in table 12 which is equal to a '''''' '''' increase of route costs. Moreover, 
a fraction of all stores (9.05 %) is not the last store in the route in the current schedule, where it 
is not possible to collect returnables since this would hinder the next delivery.  

'''''''''''' '''''''''''''''' ''''''' '''''''''''''''' ''''' 

''''''''' '''''''''''''''''' '''''''' '''''''' ''' '''''''''' 
''''''''''' ''''''''''' '''''' '''''''''''''''' ''' '''''''''' 
''''''''' ''' ''''''''''' 
Table 12: Extra costs for collecting returnables 

To incorporate returnables in the model, we make use of a fixed number of containers in the 
backroom to account for remaining inventory and returnables as indicated by the stores. If 
capacity becomes a bottleneck, trucks are always able to collect returnables at the moment of 
delivery, thereby preventing capacity issues. Although this leads to a cost increase, it is expected 
that this “emergency” solution is not frequently needed.  In addition, if stores are not the last 
store in the route, the delivery sequence can be changed.  

Concluding, returned packaging is not expected to have influence on the process. Moreover, 
employees of Jumbo Supermarkten indicate that is that the available backroom capacity for the 
storage of nonconcurrent dry groceries containers can be approximated by a constant capacity. 
We will continue under this assumption. 
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5.2.9 Two types of workers, where available capacity is limited for 
regular shelf stackers 

Although it is possible to distinguish more types of workers based on age and hourly wage as 
shown in table 13, a rough distinction between two groups is reasonable to include the 
difference. Interviews with store supervisors confirm this, and indicate that most of the regular 
shelf stackers can be assumed to be of class 1. A limitation of the shelf stacker capacity is 
reasonable to model for example, the unavailability of young shelf stacking capacity during the 
day and thereby, it is a suggestion for improvement of the model. A general restriction on the 
overall shelf stacking capacity is not included in the current model. If timeslots become very 
small, the number of containers that is stacked eventually is capacitated due to the availability 
of space in the store corridor and due to the nuisance that is caused by customers by shelf 
stacking during opening hours.  

Class Hourly wage 

1: < 18 years ''' ''' 

2: < 20 years '''' '''  

3: < 23 years ''' ''' 

4: < chef ''' ''' 

5: Specialist ''' ''' 

Table 13: Hourly wage per labor class, rounded in whole Euros 

5.2.10 General conclusion 

Based on the assessment of the model’s assumptions, it can be concluded that the model’s 
assumptions seem reasonable although limitations are observed for: 

- The observed order smoothing by store managers; 
- The fixed truck capacity per store; 
- The uncapacitated shelf stacking capacity. 

Although these assumptions will have influence on the model’s output, we will continue under 
these assumptions. 

5.3 Model performance and output analysis 
This paragraph analyzes the output of the model. During this paragraph we will generally 
compare three situations: 

-  “Current situation”, which represents the effect of the current schedules given the 
parameter setting defined earlier;  

- “Local optimization”, which represents the effect of the set of selected schedules before 
applying the smoothing approach; 

- “Smoothing tariff”, which represents the effect of the set of selected schedules after 
applying the smoothing approach; 

What needs to be noted is that for the “current situation”, the output will be based on the 
calculated demand for capacity instead of on the realized demand. This excludes the presence 
of order smoothing by store managers. Although this limits the exact comparison with the actual 
current situation, it creates the possibility to compare the current situation given the model of 
Broekmeulen and Van Donselaar (2012) with the model’s output.  
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5.3.1 Data set and model performance 

The data set consists of 122 stores, for all of which the parameter settings as mentioned in 
paragraph 5.1.7 are available. Running the PWDS optimizer takes about 40 minutes.  

5.3.2 Key performance indicators 

In essence, the optimal solution should provide the solution with the lowest costs given the 
capacities in the model. To provide a more in-depth view on the results, we will compare the 
solutions based on several aspects with one or multiple KPIs: 

- Distribution center performance 
o DC costs;  

 Average smoothing tariff 
o Aggregated volume per timeslot; 

 MAD: Mean Absolute Difference between the target workload     and 
the aggregated workload after smoothing, across all   

 Minimal workload, measured in roll containers  
 Maximum workload, measured in roll containers 

o Number of routes: determines both the dock load (DC) and the number of 
required trucks per timeslot (transportation); 

 Minimal number of routes 
 Maximum number of routes 

- Transport performance 
o Transportation costs; 

 Average transportation costs for the DC 
 Average transportation costs for the store 

o Occupancy rate;  
 Average occupancy rate 

o Number of stops; 
 Total number of stops 

o Number of combinations, i.e. number of routes with more than one stop; 
 Average number of combinations/Number of stops 

- Store performance 
o Handling costs; 

 Average store handling costs 
o Delivery frequency; 

 Average delivery frequency 

The output analysis will consider the measures in more detail. For the sensitivity analysis, 
verification and validation, we will make use of the KPIs as such. It is important to note is that 
cost analyses can only be considered for the local optimization solution and for the solution 
after smoothing. The current solution cannot be evaluated in terms of costs, due to the fact that 
the model of Broekmeulen and Van Donselaar (2012) makes use of an LP-formulation. Hence, 
where the current solution can be less strict considering the availability of backroom capacity, 
this is a hard constraint in the analytical model. For 39 stores of the total of 122 stores (32 %), 
the current schedules are not included as an optional schedule and costs are not calculated. 
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5.3.3 Output analysis 

This paragraph outlines the results of the analytical model of Broekmeulen and Van Donselaar 
(2012) given the data input as described prior in this report. This leads to the cost balance as 
presented in figure 20. As can be seen, the costs for handling in the store represent the largest 
share in the cost pie. In accordance with the supply chain cost composition in figure 3, the store 
handling costs are about twice as high as transportation costs. The costs in the distribution 
center are much lower, due to the fact that this figure considers the smoothing tariffs instead of 
actual DC costs. 

 
Figure 20: Share in total costs in the model 

Given this cost output, we will describe the consequences of the solution per step of the supply 
chain. 

Distribution center 
In this section we will consider the implications of the output for the distribution center. The 
performance of the distribution center mainly depends on the aggregated number of roll cages 
per timeslot that need to be processed by the DC, which is determined by [IPL 7]. We will 
consider the distribution of these loads and we will consider the smoothing tariffs that are used 
to smooth the solution after local optimization. 

 
Figure 21: Aggregated number of containers per timeslot 
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Figure 21 shows the distribution of roll-containers over the week. Firstly, it can be seen that 
during the beginning of the week (timeslots 1 to 8), the slot load of the current solution is 
comparable with the solution after applying the smoothing approach. However, timeslot 9 
shows a large peak for the current solution while the solution after applying the smoothing 
approach shows a more smoothed pattern. As was discussed in section 5.2.1, the execution of 
order smoothing by store managers is not included in this model. Hence, this indicates that due 
to the overestimation of the demand during peak periods in the current demand model, the 
actual peak in slot loads will be lower than indicated. Nevertheless, due to the fact that earlier 
results in figure 16 showed that the overestimation of delivery volumes was limited to about 20 
% on Friday, we can still state that the results of the current solution show potential to reduce 
the peak load. The number of routes departing from the DC per timeslot showed a pattern 
which is comparable with the smoothed workload distribution. Thus, no capacity problems are 
expected considering the dock capacity or truck availability. 

The smoothing of the solution after local optimization occurs by means of the introduction of 
smoothing tariffs in the anticipated base level according to figure 22 on the next page. The 
seasonal pattern in the demand data creates an incentive for stores to receive a delivery at the 
end of the week. Hence, to smoothen the initially large aggregated expected sales volumes 
during these last timeslots of the week the smoothing tariffs show a large peak at the end of the 
time horizon. However, due to the cyclic time window and the interaction between stores, the 
reduction of the local demand for deliveries at the end of the week (timeslots 10-12) will lead to 
an increase in the demand for deliveries during timeslots at the beginning of the week. Thus, to 
balance the demand the smoothing tariff needs to be increased at the beginning of the week to 
compensate the flow of demand from the end of the week. 

The initial  solution with local optimization shows an alternating pattern where within one day 
the slot load in the afternoon timeslot (2,4,6…,12) is higher than the morning timeslot (1,2,…,11) 
for all delivery days. This pattern is explainable due to the availability of cheap labor in the 
afternoon time slot which gives stores an incentive to choose for a delivery in the afternoon 
timeslot, combined with the fact that the model assigns (very low) holding costs to the 
backroom inventory at the end of period  . The alternating pattern after the local optimization is 
cancelled out after applying the smoothing algorithm of Broekmeulen and Van Donselaar 
(2012). Although figure 21 showed an alternating pattern for the slot load after local 
optimization, there is not a clear alternating pattern visible in the graphical representation of 
smoothing tariffs in figure 22. 
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Figure 22: Smoothing tariff per timeslot 

The conclusion that only a small tariff is required to smooth workload to a large extent is 
supported by figure 23 as well. The allocation of small smoothing tariffs is already able to 
outperform the store benefit of the availability of cheap labor availability in the afternoon slots 
for stores with a relatively large backroom capacity. 

  
Figure 23: Workload after smoothing, for three 
values of the maximum smoothing tariff 

Figure 24: Occupancy rate throughout the week 

Transportation 
The performance of the transportation function ultimately depends on the '''''''''''''' '''' 
''''''''''''''''''''''' ''''''' '''''''''''''''' ''''' '''''''''''' ''''''''''' ''''''' '''''' '''''''''''''' '''' '''''''''''''''''''''' ''''''''' This leads to a 
share in the total supply costs as indicated in figure 20. Hence, although the relative cost share 
of transportation is small compared to the other steps in the supply chain, the extent to which 
the costs can be influenced is relatively high. To put these financial measures in perspective we 
will consider the occupancy rate and the number of loads and combinations.  

The occupancy rate per timeslot, depicted in figure 24, shows a relatively flat pattern over the 
week. However, the occupancy rate of the current solution is considerably smaller than the 
occupancy rate for the solution as generated by the algorithm of Broekmeulen and Van 
Donselaar (2012). This result can be explained by two factors.  
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First, the model of Broekmeulen and Van Donselaar (2012) includes truck capacity in the 
anticipated base model for the selection of schedules. However, in the current process within 
Jumbo Supermarkten, the schedule selection is based on store costs and capacities and this set 
of schedules is only sub optimized for transportation and DC at the end of the process. Hence, 
the observed difference in figure 24 between the current solution and the solution after 
smoothing is mainly due to the fact that in the model of Broekmeulen and Van Donselaar (2012) 
truck capacity is part of the anticipated base model while in the current situation this is not the 
case.  

Second,  the model of Broekmeulen and Van Donselaar (2012) assumes a fixed truck capacity 
per store. However, almost '''''''' of the stores is delivered by more than one truck capacity per 
week. Hence, in reality the truck capacity differs per delivery which directly leads to an over- or 
underestimation of the delivery volume compared to the truck capacity. This implies an 
underestimation of the occupancy rate and an overestimation of the transportation costs for 
the current situation. 

  
Figure 25: Nr. of combinations/Nr. of stops Figure 26: Average nr. of roll-containers per stop 

Thus, the occupancy rate makes a statement considering the use of capacity at the moment of 
departure at the DC. In addition, it is relevant to consider the extent to which multiple loads can 
be combined into one truck. A larger ratio of combinations relative to the number of stops 
indicates a less efficient use of trucks per route as such, although savings on instore operations 
may outweigh these extra costs. Figure 25 depicts the number of combined routes for the three 
different situations relative to the number of loads. For all three solutions, the relative number 
of combinations is decreasing as the week progresses, which is mainly influenced by the average 
number of roll containers per stop in figure 26, due to the fact that combining two loads in one 
truck is easier when loads are small.  

Store operations 
In the current schedule generation process within Jumbo Supermarkten, stores are assigned to a 
delivery day and a time block. Hence, in this situation stores can be delivered in at maximum 6 
time blocks per week and this schedule is input to the allocation of transportation material. If 
the expected delivery volume according to Jumbo’s forecast exceeds the assigned truck 
capacity, the store will receive an additional delivery with the remainder of the products within 
the same timeslot.  

In contrast, in the analytical model of Broekmeulen and Van Donselaar (2012), the assignment 
of a store to a timeslot has a restricted truck capacity and the model allocates a penalty cost if 
the expected delivery volume exceeds this capacity. Hence, it is not possible to compare the 
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solution after smoothing based on the frequency as such. However, it is possible to compare 
based on the number of delivery days on which a store receives a delivery.  

 '''''''''''''''''''''  ''''''''''''' '''''''''''''''' 

''''''''''''''' '''' '''''''''''''''' '''''''''  
''' '''''''''''''' '''''''''''''''''' 

''''''''''''''''' '''''''' '''''''''''''' '''''''''''''''''' '''''''''''''' '''''''''' 

''' ''' ''' '' 
''' ''' ''' ''' 
''' '''''' '''' ''''' 
''' ''''' ''''' ''''' 
''' ''''' '''' ''''' 
''' '''''' ''' ''''' 
'''  '''''  
'''  '''''  
'''  '''  

'''''  '''  
'''''  ''  
'''''  '''  

Table 14: Delivery days and delivery frequency for the current situation and for the smoothing solution 

Table 14 shows the results for the smoothing approach and the current solution. The current 
solution has total of ''''''' delivery days per week with an average of '''''''' delivery days per week 
per store, while the smoothing solution has 584 delivery days per week and an average of 4.79 
delivery days per week per store. Thus, the solution of Broekmeulen and van Donselaar (2012) is 
comparable with the current situation regarding the number of days at which a store is 
delivered. The main difference is the fact that while the current solution has a standard 
deviation of '''''''', the smoothing solution has a standard deviation of 1.19. Hence, while the 
average number of delivery days is comparable, the deviation the number of delivery days is 
much higher for the smoothing solution.  

Furthermore, data analysis showed that for most of the stores the eventual delivery frequency 
of the approach of Broekmeulen and van Donselaar (2012) was equal to the minimal delivery 
frequency which is possible regarding delivery frequency and backroom constraints. Only five 
stores in the sample set of 122 deviated from their minimal delivery frequency and these five 
stores showed an increase of the delivery frequency with one delivery per week. Hence, we can 
conclude that due to the relatively high costs per drop relative to the handling costs, the main 
contribution of the approach of Broekmeulen and Van Donselaar (2012) is to determine the 
days of delivery instead of the determination of the delivery frequency.  
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5.4 Sensitivity analysis 
In this section, we will conduct a sensitivity analysis by adapting parameter values with an 
increase or decrease of 12.5% or 25 %. We will compare the results based on the key 
performance indicators as described in section 5.3.2. The results of the sensitivity analysis as 
shown in appendix xi yielded three conclusions: 

- There is a clear separation between two types of parameters in the model of 
Broekmeulen and van Donselaar (2012) 

o Parameters which only have an influence on the eventual expected 
transportation costs for the DC; 

o Parameters which have direct or indirect influence on all schedule parameters, 
due to the fact that the parameters affect the top level or anticipated base 
level; 

- For the parameters which only have effect on the eventual transportation costs for the 
DC, hourly transportation costs have the largest influence on the eventual costs. 
However, the influence of these costs is limited due to the fact that these parameters 
do not influence schedule selection but only the eventual schedule costs. 

- Parameters which directly or indirectly affect all schedule parameters do have influence 
on the schedule choice. From these parameters, the target MAD of the workload and 
handling costs are most sensitive to changes in input data. 

5.5 Verification and validation 
This section first considers the verification of the model, which checks whether the results of the 
model are in accordance with what was programmed. Second, this section considers the 
validation of the model which checks whether results are in line with reality. 

5.5.1 Verification 

Verification checks whether results are in accordance with the expected reaction of the model. 
We will do a verification by means of an extreme value test. In this test, we vary the parameter 
settings between extreme values to check the effect on the outcome of the model. As can be 
seen in appendix xii, insertion of the extreme values does not yield unexpected outcomes.  

5.5.2 Validation 

As discussed prior in this report, there are two main issues regarding the validity of the model. 
First, the difference between the expected delivery quantity and the realized delivery quantity 
based on historical data and second, the difference regarding the truck capacity and occupancy 
rate. 

The inaccurate estimation of the expected delivery volumes reduces the validity of the model. 
The inclusion of order advancement by store managers should improve the validity of the model 
and thereby is suitable for further research. However, even if we can acquire a good 
approximation of order advancement in the model, it is arguable to what extent it is possible to 
yield an accurate estimation of the expected delivery volume for all delivery moments and all 
delivery schedules. 
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The second issue regarding the validity of the model was the difference between the current 
delivery of one store by trucks with more than one type of capacity while the model which 
assumes a single truck capacity per store. Although this limits the validity of the model, the 
delivery of a store by one truck type is not per definition worse than the current solution at 
Jumbo Supermarkten. Furthermore, the future harmonization of the truck fleet will increase the 
validity of this assumption. 

Concluding, these two issues affect the validity of the model. However, we will leave these two 
topics for future research and these issues are taken for granted. 

5.6 Discussion of U, Gamma(i) and handling costs 
In the introduction of this report, we addressed the influence of the backroom as an important 
topic for future research. In this section, we will consider the interaction between three model 
parameters U (which represents the costs per drop for all stores) gamma(i) (which represents 
the fraction concurrent) and shelf stacking costs. As can be seen in the model of Broekmeulen 
and Van Donselaar (2012), these parameters have an interaction via the store’s backroom.   

First of all, given a fixed set of capacity parameters the drop cost parameter   and the handling 
costs jointly determine the costs during local optimization and the schedule choice is purely 
based on the balance between these costs. The model of Broekmeulen and Van Donselaar 
(2012) selects a schedule per store. Due to the fact that regardless of the schedule the delivered 
volume per week in terms of roll containers is fixed, all containers will have to be stacked and 
only the difference between regular shelf stackers and full time employees is relevant. Hence, 
when we lower the difference between the shelf stacking costs (for regular and fulltime 
employees) and   with the same percentage, the solution remains exactly the same after local 
optimization. The same holds for the solution after smoothing, although due to the presence of 
rounding effects the smoothing tariffs and the resulting schedule selection can slightly differ. 

Apart from the drop cost   and the difference between handling costs, the fraction concurrent 
which is represented in the model by gamma(i) influence the schedule choice as well. This can 
be subdivided in two effects: 

- First, gamma(i) has direct influence in combination with handling costs due to the fact 
that the fraction concurrent is stacked in the model by means of fulltime workers. 

- Second, gamma(i) has indirect influence in combination with handling costs due to the 
fact that the fraction concurrent determines the constraining effect of the backroom. 

Hence, gamma(i) influences both the fraction of the demand which is stacked by fulltime 
employees relative to the regular shelf stackers. 

Concluding, gamma(i) and the backroom capacity jointly determine the available backroom 
capacity which is available per store to store nonconcurrent backroom inventory. Subsequently, 
the balance between the drop cost parameter   and the difference between the two handling 
cost parameters determine the eventual store handling costs per schedule per store. 
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5.7 Conclusion 
The numerical study in this chapter considered the use of the analytical model of Broekmeulen 
and Van Donselaar (2012). We can draw multiple conclusions on this chapter: 

- Analysis of the demand data showed that store managers make use of order 
advancement. This is an area for future research. 

- Although the model assumes a fixed truck capacity per store, table 11 showed that 
almost ''''''' of the stores is delivered by trucks of more than one different capacity. 

- Based on the expected delivery volume available, the approach of Broekmeulen and Van 
Donselaar (2012) is able to reduce the peak load. Reduction of peak loads is beneficial 
for the distribution center in two manners: 

o First, the reduction of peak loads leads to a lower demand for (flexible and more 
expensive) temporary workers. 

o Second, a peak load causes a reduction of the labor productivity due to 
congestion in DC corridors. This increases costs as well. 

- To be able to compare different solutions with a similar MAD, we have set the maximum 
smoothing tariff to a very large value in the standard parameter settings. However, 
figure 23 showed that allocation of a relatively small tariff can already provide an 
incentive to the stores that is large enough to balance the DC workload to a large 
extent. Thus, stores do not necessarily need to receive a schedule which deviates much 
from their optimal schedule.  

- The approach of Broekmeulen and Van Donselaar (2012) shows an improvement of the 
occupancy rate which is mainly due to the fact that this analytical model makes a 
comparison with truck capacity in the anticipated base model. Hence, the approach has 
the potential to decrease Jumbo’s transportation costs by means of a better matching of 
demand and supply of respectively, roll containers and (truck) capacities. 

- As shown in table 14, the average number of delivery days that result from the model of 
Broekmeulen and Van Donselaar (2012) are comparable to the number of delivery days 
for the current actual situation. Due to the fact that the model makes use of hard 
backroom constraints, the average of delivery days of the model is slightly higher than 
the current delivery frequency. The number of delivery days of the model showed a 
much larger standard deviation than the number of delivery days for the current actual 
situation. 

- For 117 out of 122 stores the delivery frequency is equal to the minimal delivery 
frequency. The 5 stores with a deviating delivery frequency showed an increase of the 
delivery frequency with exactly one delivery. Hence, the approach contributes by 
optimizing the distribution of delivery days more than by optimization of the delivery 
frequency.  
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Chapter 6: Implementation 
This chapter discusses the final phase of this project, the implementation of a new approach for 
the development of a periodic weekly delivery schedule (PWDS), in the form of a supply chain 
planning system. 

In the current situation, the design of a PWDS is a stepwise process; the coordinator supply 
chain planning assigns one schedule per store based on certain store characteristics, 
subsequently the transportation function assigns trucks to deliveries and the distribution center 
checks whether the workload distribution is feasible. A supply chain planning system can 
improve both process and performance of the current schedule generation. This chapter 
considers the advantages regarding both process and performance in paragraph 6.1 and 
paragraph 6.2. Furthermore, this chapter considers the possibilities of the implementation of 
the smoothing tariff in paragraph 6.3. 

6.1 Performance 
A new supply chain planning system is able to contribute to a better schedule performance on 
three aspects. 

First of all, the use of such a system gives clarity to all the stakeholders in the process. Due to 
the importance of the schedule for day-to-day operations, the development of such a schedule 
can lead to an emotional and political discussion. A scheduling approach can concentrate these 
discussions on a rational discussion on parameter values and the introduction of a scheduling 
approach can contribute to the discussion as such, due to the fact that it is possible to calculate 
the additional costs for the change of the set of schedules. 

Secondly, a new supply chain planning system can result in a better set of schedules as such for 
the whole supply chain. For example, taking into account truck capacity during the choice of a 
schedule can lead to a reduction of the number of routes and a reduction of instore handling 
costs due to the delayed delivery. Or for example, taking into account store specific demand 
variability can prevent overload or partly empty trucks. 

Thirdly, a supply chain planning system gives the opportunity to conduct “what if..?”-analyses 
on a strategic level. For example, it can be used to study a possible reallocation of stores to a 
distribution center or to consider the option to increase the distribution center’s production 
capacity.  

6.2 Process 
Within Jumbo Supermarkten, it can be expected that the largest benefit of the introduction of a 
supply chain planning system will be in the process improvement. Currently, the process 
contains numerous manual data adaptations which makes the process slow and labor intensive. 
An integrated supply chain planning system is able to contribute to a better schedule generation 
process on three aspects. 

Firstly, the introduction of a supply chain planning system can make the process less labor 
intensive. The current process contains several manual executions of data adaptations, which 
can be automated. 
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Secondly, the introduction of a supply chain planning system can make generation of a set of 
schedule faster. This decreases the lead-time of the generation of a schedule which gives the 
opportunity to adapt the schedule more often to changing demand during the year. 
Furthermore, a decrease of the schedule generation lead-time gives the opportunity to use 
more recent data and even to respond faster to emergencies, such as for the reallocation of 
stores during a (partial) breakdown of a distribution center.  

Thirdly, it is possible to couple the supply chain planning system with, amongst others, SAP. This 
reduces the amount of errors which currently occur due to inaccurate data entry.  

6.3 Implementation of a tariff structure 
The resulting tariff structure that results from the model of Broekmeulen and van Donselaar 
(2012) provides incentives for stores to use schedules which are sub optimal as such for that 
specific store. However, this does not require the full incentive needs to be paid out to the 
stores.  

Regarding the use of these incentives, two different systems are possible: a bonus system or a 
penalty system. The first system considers the smoothing tariffs to be additional income for the 
store to compensate for extra costs. The second system assumes worst-case costs for the store, 
and stores can acquire a better schedule by paying a certain fee to Jumbo Supermarkten. In 
both cases, not the full smoothing tariff needs to be paid out to the stores. Jumbo Supermarkten 
can determine a threshold value that needs to be reached before a store is paid out the 
difference between this threshold value and the smoothing costs. Due to differences in store 
size this value should be determined per roll container and this value can, for example, be 
determined by the store with the lowest average smoothing costs. 

6.4 Conclusion 
One of the two aims of this master thesis to provide an approach for the generation of the 
periodic weekly delivery schedule. Eventually, this can be used as a basis for a future integrated 
supply chain planning system for Jumbo Supermarkten. Based on the findings, we can conclude 
that the introduction of a supply chain planning system can make the current process both more 
effective and efficient and the introduction of smoothing tariffs can structure the political 
discussion. 
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Chapter 7: Conclusion and recommendations 
This chapter contains the main conclusions and recommendations that resulted from the 
research project. In paragraph 7.1, general conclusions will be drawn regarding the different 
phases of the project. Paragraph 7.2 addresses two recommendations for Jumbo Supermarkten. 
Paragraph 7.3 considers the academic relevance of this thesis and finally, paragraph 7.4 
considers limitations and areas for future research. 

7.1 General conclusions 
Within this section conclusions will be drawn regarding the different phases of the research 
project. 

7.1.1 Analysis of the problem context 

The introduction of this master thesis indicated yielded that the current process for generating 
the periodic weekly delivery schedule at Jumbo Supermarkten is inefficient and, presumably, 
also ineffective. To improve the schedule generation, Jumbo aims at an integrated supply chain 
planning which was supported, amongst others, by a supply chain cost analysis which illustrates 
the importance of a supply chain approach instead of a focus which is limited to a sub 
optimization of for example, transportation. 

7.1.2 Conceptual model 

To improve the current process, chapter 2 considers the development of a new conceptual 
model. Regarding the conceptual model the following main conclusions were made: 

- The conceptual model is based on a hierarchical planning framework based on 
Schneeweiss (2003). This framework consists of a top model which decides based on the 
anticipated base model. 

- The top level consists of a local store cost model. Only handling costs are taken into 
account. 

- The anticipated base level contains the anticipated transportation costs for the store. To 
avoid stores to be privileged or prejudiced based on the distance to the distribution 
center, we include a parameter in the model which resembles the costs per drop and 
which is the same for all stores. 

- The anticipated base level contains the expected DC costs for the store. To level the DC 
workload, smoothing tariffs are introduced which have influence on the aggregated 
result after local optimization by the store. 

7.1.3 Analytical model 

This master thesis makes use of the analytical model of Broekmeulen and Van Donselaar (2012). 
The model is deterministic and makes use of the framework of Schneeweiss (2003).  

7.1.4 Beta 

This master thesis specifically considers the analysis of the parameter beta(it), which is a 
parameter of the analytical model of Broekmeulen and van Donselaar (2012). The analysis firstly 
showed that the quality of the SAP shelf capacity data was not as good as expected, at least for 
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very fast moving products. After a data quality check for 18 stores and 3 products per store, 
actual instore shelf capacities showed to be on average 116 % higher than the shelf capacities in 
SAP. Due to the fact that SAP shelf capacity is used to perform an instore logistical optimization, 
an improvement of data quality can lead to a more smoothed store demand and thereby to 
large cost savings in the remainder of the supply chain. 

Secondly, after a choice for the definition of beta as described in section 4.1, the analysis 
focuses on approximation of beta(it). The computation of beta(it) according to the definition is 
done per product per store which causes a very high demand for computational resources. 
Approximation by means of readily available data increases the efficiency of the model. The 
approximation was split up in two parts: approximation of gamma(i) which represents the 
average of beta(it) and approximation of the seasonal effect by means of alpha(it). The 
approximation of the two parameters yielded three conclusions: 

- Regression analysis does not show a significant relationship between turnover pressure 
(i.e. turnover in Euros per square meter store floor area) and gamma(i). 

- Regression analysis showed a significant relationship between turnover share beer and 
turnover share coke & soda. 

- Approximation of alpha(it) by means of a store dependent seasonal index parameter of 
the consumer turnover per day does not yield a good approximation. Beta(it) has a 
much larger amplitude and a generic correction for the difference in amplitude does not 
yield better results than approximation of beta(it) by means of gamma(i). 

7.1.5 Numerical study 

Chapter 5 considers a numerical study of the research context. The numerical study yields the 
following conclusions: 

- Stores make use of order advancement, the (expected) delivery volume is not equal to 
the sum of sales during the review period. This is an area for future research. 

- Almost half of all stores is delivered by more than one type of truck capacity. 
- Based on the expected delivery volume available, the algorithm of Broekmeulen and 

Van Donselaar (2012) is able to reduce the peak load. Reduction of peak loads is 
beneficial for the distribution center in two manners: 

o First, the reduction of peak loads leads to a lower demand for (flexible) 
temporary workers. 

o Second, a peak load causes a reduction of the labor productivity due to 
congestion in DC corridors. This increases costs as well. 

- Allocation of a relatively small tariff can already provide an incentive to the stores that is 
large enough to balance the DC workload to a large extent.  

- The approach of Broekmeulen and Van Donselaar (2012) is able to decrease Jumbo’s 
transportation costs by means of a better matching of supply and demand or 
respectively, roll containers and capacities. 

- The average number of delivery days which is obtained the approach of Broekmeulen 
and Van Donselaar (2012) is comparable with the average number of delivery days for 
the current situation, although the distribution of the number of delivery days per store 
of the model showed a much larger standard deviation. 
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- For 117 out of 122 stores the delivery frequency is equal to the minimal delivery 
frequency. The five stores with a deviating delivery frequency showed an increase of the 
delivery frequency with one delivery. Hence, regarding the fact that delivery frequencies 
are more or less fixed, the approach of Broekmeulen and Van Donselaar (2012) mainly 
contributes by optimizing the distribution of delivery days. 

7.1.6 Answer to the research question 

In the introduction in chapter 1, we addressed the following research question:  

How can Jumbo Supermarkten B.V. generate a Periodic Weekly Delivery Schedule that has the 
lowest total cost for the supply chain and takes into account all constraints? 

In the chapter, the research question is split up in two sub questions. The first research question 
questions how Jumbo Supermarkten can simplify the process of designing a PWDS. As was 
concluded in the first chapter, the current schedule generation process consists of many steps 
with many different departments which leads to a labor intensive and time consuming process. 
The model has shown to provide good results where the time needed for schedule generation is 
limited to about 40 minutes. Thus, the introduction of an integrated schedule generation system 
can shorten the leadtime of the schedule generation process and reduce the (human) resources 
needed to generate the schedule. 

The second sub question questions how Jumbo Supermarkten can increase the performance of 
the PWDS. As shown in chapter 6, the approach of Broekmeulen and Van Donselaar (2012) has 
the potential to improve the performance of the model output. The integrated approach leads 
to a better match between demand (in roll containers) and supply (of capacity) which is able to 
reduce peak loads for the DC, costs for transportation and yield better schedules for stores. 

7.2 Recommendations for Jumbo Supermarkten 
The section addresses the recommendations for Jumbo Supermarkten. As shown in chapter 1, 
the supply chain cost composition gives evidence for the introduction of a supply chain oriented 
planning process. For the reasons explained in the prior paragraph, one recommendation for 
Jumbo Supermarkten is to implement a new supply chain planning system which aims at the 
generation of an integrated planning.  

Second, chapter 4 showed that the quality of the SAP shelf capacity data is lower than expected. 
Hence, it is recommendable to investigate : 

- To what extent this sample size is representative for all products and all stores; 
- To what extent the workload balancing for transportation and for the DC can be 

improved by an improvement of the data quality; 

Subsequently, it can be beneficial to provide incentives for stores to increase the SAP data 
quality. Apart from the shelf capacity data, stores show large differences in terms of variability 
of store demand. Hence, Jumbo should investigate the extent to which it is possible to influence 
store order behavior. 
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7.3 Academic relevance 
In the first chapter we discussed the fact that one of the two goals is to contribute to the 
literature available on the topic of the PWDS. This thesis contributes to this topic on two 
aspects. 

To start with, this master thesis contributes to the academic literature available by the fact that 
in contrast to the literature available, this thesis takes into account the whole supply chain while 
prior research was mostly limited to transportation costs (van Dun, 2012). The approach of 
Broekmeulen and Van Donselaar showed to be able to balance supply chain costs and 
capacities. 

Furthermore, this master thesis contributes to the academic literature available with the fact 
that in contrast to the literature available the approach of Broekmeulen and Van Donselaar 
(2012) focuses on stores instead of on transportation. The introduction of an anticipated base 
level based on the framework of Schneeweiss (2003), is able to represent the often political 
process that comes with the distribution of costs. This makes the approach especially useful in 
case of franchise stores. 

7.4 Limitations and areas for future research 
This section shows some limitations of the model, which are suggested for areas suitable for 
future research: 

- The current formulation of the model assumes delivery volumes to be equal to the sum 
of sales during the review period. The inclusion of order advancement by store 
managers can yield a better approximation. Therefore, this is an area for future 
research. 

- The current model assumes deterministic demand. The inclusion of stochasticity in the 
model is an area which is important for future research. 

- The inclusion of a heterogeneous truck capacity can improve the model’s  validity and 
therefore, is an area for future research. 
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Appendices 

Appendix I 

 

Figure 27: Organization chart of Jumbo Supermarkten’s Supply Chain Management department 
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Appendix II 

 
Figure 28: Example of a Periodic Weekly Delivery Schedule (page 1/3) 
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Appendix III 
The operational logistical costs in the supply chain can be subdivided per link in the supply chain. 

Store operational costs 
Store operations comprise the largest share of the logistical cost pie, which is mainly determined 
by labor costs. For company owned stores these costs are exactly known and can be found in 
the cost realization, which resembles the total wage costs including gross wages as well as other 
expenses such as social security charges.  In contrast to company owned stores, wage costs for 
franchise stores are only partially retrievable since franchisers do not have the duty to report 
their exact cost composition. Since the total turnover for franchise store is known, we can 
estimate the total salary cost realization of franchise stores by estimating the percentage of the 
turnover that is spent on store salary costs. Thus, we now have an estimation of the total salary 
costs of all stores. 

However within the total salary costs for stores, a clear distinction has to be made within 
relevant costs and irrelevant costs (e.g. cashier salary costs). Within the total salary costs, only 
costs related to shelf stacking are considered as relevant. An estimation of these costs can be 
gained by combining two parts. First, an estimation of hours (per product category) by means of 
a predetermined overview of store hour norms. These norms specify exactly the number of 
hours per sub activity per week. Second, an estimation of the hourly wage per product category. 
This can be gained by dividing the store’s salary costs realization by the number of hours. 

Based on these results, we can determine the fraction of the total wage costs estimation that is 
spent relevant for the periodic weekly delivery schedule. This is based on franchise stores 
(''''''''''''') and company owned stores (''''''''''''). 

Distribution center costs  
Costs for the distribution center can be split in fixed costs for amongst other housing and 
depreciation and variable costs such as costs for handling and inventory waste. Within these 
costs, handling costs is the largest share within the total costs. Only handling costs are 
considered relevant for the problem and are included as relevant costs in the total cost 
composition. 



 

 

V 

 

 

Figure 29: Distribution Center cost distribution 

Transportation costs 
As well as in the store operations, transportation costs can be split in two parts: charter routes 
and routes by company owned trucks. Charter costs are based on ''''''''''' ''''''''''''''''''''''''' ''''''''''' 
''''''''''' ''''''' '''''''' ''''''''''''' '''''''''''''''' '''''''''' ''''''''''''' '''''''''''''''''' ''''''' ''''''''''' 

 
Figure 30: Charter cost distribution 

Although actual costs for company owned trucks consist of cost realizations such as fuel and 
maintenance costs, the financial realization used within Jumbo Supermarkten is split in the same 
'''''''''' parameters as used for the charter trucks: ''''''''''' '''''''''' ''''''' ''''''''' '''''''''''''''''' ''''''''''' '''''''' 
'''''''''''' '''''''''' The composition of the total costs for the company owned transportation is shown 
in figure 31.   
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Figure 31: Transportation costs company owned fleet 

Total cost composition 
Aggregating the results, results in the overall view on supply chain costs for the PWDS, which is 
displayed in figure 32. 

 

Figure 32: Total relevant cost composition 

This result matches the supply chain cost composition as given by Broekmeulen (2004). 
Although the costs included in the cost composition are all relevant to the PWDS, one cannot 
draw a conclusion about the extent to which these costs can be influenced as such. Based on the 
cost composition one can conclude however, that a planning system purely aimed at minimizing 
transportation costs is likely to produce inferior results compared to a system that takes into 
account the other supply chain steps as well. 
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Appendix IV 
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Figure 33: Current conceptual model at Jumbo Supermarkten 
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Appendix V 
This section describes the model of Broekmeulen and Van Donselaar (2012).  

We will first introduce an integral tactical planning (ITP) model, in which the planning 
department has the authority to assign delivery schedules to stores, regardless of the cost 
impact on the local store. Next, we assume that store managers are more or less independent 
from the retailers headquarter and therefore need an incentive to assist the central planning 
department to level the workload at the DC. The decision by the store manager on the delivery 
schedule has a large effect on the operations of the distribution center, but we assume that the 
local manager will always select the delivery schedule with the lowest cost. Based on the 
framework of Schneeweiss (2003), we formulate an anticipated base-level (ABL) model for the 
distribution planning department at the DC which deals with this decentralized decision making. 

The basic input parameters for both the ITP and the ABL are the set of stores, the handling and 
storage capacities per store and the expected sales per weekday per store. 

Notation 

 
ijx : store i uses schedule j; 

 P : number of time slots; 

 tw : average expected workload at the DC [RC]; 

 

tw : maximum expected workload at the DC in time slot t [RC]; 

 
jtT : time table of schedule j in time slot t (1=delivery, 0=no delivery); 

 
jtR : time to next delivery according to schedule j in time slot t; 

 iV : truck capacity assigned to store i [RC]; 

 
iB : basic available backroom storage capacity (independent of the delivery schedule, 

excluding returnables such as empty roll cages, and remaining inventory of broken case 
packs after stacking) in store i [RC]; 

 
ijtB : available backroom storage capacity for first replenishment items in store i 

following schedule j during time slot t [RC]; 

 it : seasonal index of sales in store i during time slot t; 

 i : fraction of total sales for store i which are sold from shelves requiring concurrent 

replenishments (e.g. determined by sales rank); 

 it : fraction of total sales for store i during time slot t which are sold from shelves 

requiring concurrent replenishments, i.e. shelf capacity insufficient for sales 
corresponding with this time slot; 

 itW : available handling capacity of regular shelf stackers in store i during time slot t 

[RC/slot]; 

 its : use of regular shelf stackers in store i during time slot t [RC/slot]; 

 itf : use of full time staff for shelf stacking in store i during time slot t [RC/slot]; 

 itI : backroom inventory in store i at the end of time slot t [RC]; 
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 
FSB CCC  : storage penalty cost in the backroom, handling cost for using shelf 

stackers, and handling cost full time staff [€/RC]; 

 U : tariff for a visit at a store [€]; 

 ][ T

itCE : expected transportation cost for store i in time slot t [€]; 

 ][ itSE : expected sales volume in store i in time slot t (independent from other stores) 

[RC/slot]; 

 ][ ijtDE : expected delivery volume to store i using schedule j in time slot t [RC/slot]; 

 
We start with a basic deterministic model. Gaur & Fisher (2004) showed that for deliveries to 

grocery stores, we have at most two deliveries per truck route. As an initial estimate for    
 , we 

will assume that each truck visits a single store for each delivery and that the retailer has ample 
trucks available on each weekday. We assume a close proximity of stores to the DC, such that 
loading at the DC and unloading at the store always takes place within the same time slot. 

We assume that the expected sales are independent of the delivery schedule, which is 
reasonable with a fixed and constant fill rate during the week. We approximate the delivery 
volume by assuming that the expected delivery volume is equal to the expected sales during the 
next review period: 







jtRt

tk

ikijt SEDE
1

][][    

We further assume that at the end of a time slot, the backroom capacity is respected and the 
net available backroom capacity is already adjusted for empty roll-cages and remaining 
inventory after first replenishment (not yet the volume needed for concurrent replenishment). 
We assume that            , i.e. the fraction for concurrent replenishments depends on the 
fraction of sales generated by SKU’s with insufficient shelf space, corrected by the seasonal 
index for the time slot. 


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
jtRt
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1

][  

The target workload     in the DC for a time slot t depends on the expected sales of all allocated 
stores during the next two time slots: 
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ITP 

In the ITP, we search for an assignment of delivery schedules to stores, such that 

   





 

i t

ititit

F

it

B

it

S

i j

ij

t

jt

T

it

t

tITP

SEfCICsC

xTCwz





 [ITP 1] 

is minimized, subject to the following constraints: 

1. Each store is assigned to exactly one schedule 

 
j

ijxi 1:  [ITP 2] 

2. The delivery volume depends on the schedule assignment and is restricted by the truck 

capacity iV  

 
j

iijjtijt VxTDEti ][:,  [ITP 3] 

3. The availability of regular (low cost) workers is limited. 

itit Wsti  :,  [ITP 4] 

4. The balance in the backroom for each slot. We only need to consider the non-
concurrent volume. 

  

j

ititijjtijtittiit fsxTDEIIti ][)1(:, 1,   [ITP 5] 

and 
Pii II ,0,   

5. The backroom capacity is respected at the end of each slot. 

 
j

ijijtit xBIti :,  [ITP 6] 

6. The workload in the DC depends on the schedule assignment 

 
i j

ttijjtijt wwxTDEt ][:  [ITP 7] 

7. The schedule assignment variable is binary, i.e., }1,0{ijx . 

To solve the ITP, we use a column generation procedure. Each store-schedule combination has 
an associated local cost 

   
                                               

This local cost is determined by optimizing the local store operations based on constraints ITP3-
6 for the given delivery schedule. We generate all columns for which the delivery schedule is 
greater or equal to the minimal delivery frequency M, with 


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
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t

it

i

SE
V

M
1

][
1

 

We initially restrict the number of columns further to delivery frequencies less or equal to M+2 
if we can generate more than 1 feasible alternative.  
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We only need a very small penalty      to ensure that the backroom inventory is moved to 

the sales area. Only a value higher than       (the difference between full time staff cost and 
regular stackers cost) will eliminate the backroom inventory. 

ABL 

We can change the integral ITP model into a decentralized ABL model by introducing the penalty 

  
  as an incentive to order less RC’s in busy slots. 

  

i j

ijjtijt

W

tt xTDECwt ][:   [ABL 0] 

This changes the objective function of the ITP into: 

    









i j

ij

t

jtijt

W

t

L

ijABL xTDECCz  [ABL 1] 

Next to the original ITP constraints, we have to add a constraint to ensure that the store selects 
the delivery schedule with the lowest cost: 
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ij xTDECCTDECCji :,  [ABL 2] 

In the ABL, we need to find values for   
  that minimize the workload range in the DC by 

penalizing undesired schedules. We will do this in an iterative way until the desired workload 
range is reached or the additional cost for the local stores becomes too high. We could use (ABL 

0) to calculate the initial values for   
 . 

Combined deliveries 

After the smoothing, we will try to combine deliveries to reduce the transportation cost by 

solving a maximum weighted matching problem for each time slot t with  
i j

ijjtt xTN . 

Objective: 
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With tour cost     
      

  for     and     
     for combinations that exceed the assigned 

truck capacity, i.e.,     
j

kiijjtkjtijt VVMaxxTDEDE ,][][ .  
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Appendix VI 
The analysis of a small data set of three stores, indicated that turnover pressure (i.e. turnover in 
Euros per square meter store floor area) can yield a reasonable approximation. However, as can 
be seen in figure 34 the relation between turnover pressure and the beta parameter does not 
show a clear linear pattern and measurements show a pattern which is comparable to random 
noise. 

 
Figure 34: Turnover pressure versus Gamma(i) 

Hence, linear regression analysis of the turnover pressure on gamma(i) does provide a bad 
model fit. 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .105
a
 .011 -.055 .032311973012023 

Table 15: Regression results, dependent variable Gamma(i) and predictor Turnover Pressure  
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Appendix VII 

 
Figure 35: Turnover share Beer versus Gamma(i) 

 

 

Figure 36: Turnover share Coke & Soda versus Gamma(i) 
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Appendix VIII 
 

R R Square Adjusted R Square Std. Error of the Estimate 

.749
a
 .561 .502 .021953157844579 

Table 16: Regression result, dependent variable Gamma(i) and predictors Turnover share Coke&Soda, 
Turnover share beer 

 

 Sum of Squares df Mean Square F Sig. 

Regression .009 2 .005 9.580 .002
a
 

Residual .007 15 .000   

Total .016 17    

Table 17: Analysis of variance 

 

 

 Unstandardized 
coefficients Standardized 

coefficients 

Sig. 

B Std. Error Beta t 

(Constant) -.096 .036  -2.633 .019 

Turnover Share Beer .716 .196 .632 3.652 .002 

Turnover Share Coke and Soda 1.610 .548 .509 2.940 .010 

Table 18: Coefficients 
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Appendix IX 
To analyze the quality of the point-of-sales data on an SKU level, a sample set of point-of-sales 
data is analyzed for three example stores for a time span of one week. The resulting 117.022 
records contain 41 records with a negative value. These records represent a “negative demand” 
of 3664 products, most of which is “demand” for returned products and recycled packaging. Of 
all records, 31 records contain a value larger than 500 products, and most of these exceptionally 
large demands consider sales values for the sales of stamps. A characterization of the input data 
is shown in table 19. 
 

''''''''''' ''' ''' '' '''''''''' 

'''''''''''''''' '''' ''''''''''' '''''''''''' ''''''''''' ''''''''''' ''''''''''''''' 

''''''''' ''''' '''''''' '''''''''''''''' '''' ''''''''''''''''' '''''''''''''' ''''''''''''' '''''''''''''' '''''''''''''' 

''''''''''''''''' ''''''''' '''''''' ''''''''' '''''''' 

''''''''''''''''''' ''''''''''' ''''''''' ''''''''''''' ''''''''''' 

'''''''''''''''' ''''''''' '''''''' ''''''' '''''''' 

''''''''''''''''' '''''''''''''''''' '''''''''' ''''''''''' '''''''''''' ''''''''''' 

''''''''''''''' ''''' ''''''''''''''''' ''''''''''''' '''''' ''' ''''' ''''' 

''''''''' '''' ''''''''''''''' '''''''''''' '''''''''''' '''''''' ''''''''''' '''''''''''' 

Table 19: Data characterization of consumer demand data 

Within all records available, we only consider dry groceries. Within the dry groceries product 
group, most outliers form part of the presentation groups which are classified as a “restgroep”. 
This contains, amongst others, returned packaging bookings and products for in-store use such 
as bags and stamps. Since these products are not actual consumer sales and are not likely to 
influence the expected delivery volume, we remove this presentation group and continue with 
the dry groceries sales data. The characterization of the dry groceries product group without the 
“restgroep” is shown in table 20. 

''''''''''' '''' ''' ''' ''''''''' 

'''''''''''''''' ''''' ''''''''''''' '''''''''''' '''''''''''' ''''''''''''' ''''''''''' 

''''''''' '''' '''''''''' '''''''''''''''' '''' '''''''''''''''' '''''''''''' ''''''''''' '''''''''''''' ''''''''''''''' 

''''''''''''''''''' '''' '''' ''' '''' 

''''''''''''''''''''' ''''''' '''''''' ''''''''' '''''''''' 

'''''''''''''' ''''''''''''''''''' ''''''''''''''''''' '''''''''''''''''' '''''''''''''''' 

'''''''''''''''' '''''''''''''''''' ''''''''''''''''' '''''''''''''''''' ''''''''''''''''' '''''''''''''''' 

'''''''''''''' '''' ''''''''''''''''' ''''''''''''' ''' ''' ''' ''' 

'''''''' ''''' '''''''''''''''' '''''''''''' '''' '''' ''' '''''' 

Table 20: Characterization of consumer demand data of dry groceries, without the “restgroep” 

The data characterization still contains two remarkable points. First, what is remarkable in the 
data characterization are the relatively high maximums. These maximums consider beer, where 
a consumer unit is defined as one bottle instead of one crate. Data quality will be used to link 
consumer sales and delivery volumes, and it is plausible to assume that the volume of a bottle 
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does not deviate much from other consumer units’ volumes. Therefore, this does not cause a 
data problem. 

Second, the dataset still contains negative values. These consider negative sales of slow-moving 
products, which is caused by the booking of returned products as negative sales. Although 
negative sales should not be included since they do not influence the delivery volume in a 
negative manner, the number of products in consideration is negligible compared to the total 
number of products and thus does not have a large influence on the data quality. 

Concluding, the data quality on an SKU level is relatively good after considering if other product 
groups than the dry groceries product group and the “restgroep” presentation group are 
excluded. Therefore, we can use the presentation group data as a basis to acquire the number 
of consumer units per product group per time slot   for store  . 
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Appendix X 
 

 
Figure 37: Cumulative frequency diagram for driving time, with an indication for time slot length 

 

 
Figure 38: Cumulative number of store versus lead-time, with an indication for time slot length 
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Appendix XI 

 

Standard 

value 

Test 

value 

Average 

smoothing  

tariff 

MAD 

DC-load 

Minimal 

slot load 

Maximum 

slot load 

Min 

NrRoute

s 

Max 

NrRoutes 

Average 

Transportation 

CostsDC 

Average Transportation 

Costs Store 

Average 

Occupancy Rate 

Total 

NrLoads 

Average 

NrCombis/NrLoad

s 

Average 

Handlingcosts 

Average Delivery 

Frequency 

Standard, after smoothing 3.7 299.9 1928 3802 37 70 1220.7 1033.5 0.83 719 0.17 2391.0 5.9 

Drop tariff 167 125.3 5.1 297.3 1873 3697 36 71 1231.8 783.3 0.83 727 0.17 2389.9 6.0 
146.1 4.5 295.8 1881 3778 36 72 1196.7 907.9 0.84 722 0.17 2389.8 5.9 

 187.9 5.9 299.7 1804 3734 35 71 1223.2 1165.7 0.84 721 0.17 2391.4 5.9 
 208.8 6.0 291.0 1825 3782 36 71 1221.6 1293.6 0.84 720 0.17 2392.7 5.9 
Truck speed 65 48.8 3.7 299.9 1928 3802 37 70 1371.2 1033.5 0.83 719 0.17 2391.0 5.9 
 56.9 3.7 299.9 1928 3802 37 70 1285.2 1033.5 0.83 719 0.17 2391.0 5.9 
 73.1 3.7 299.9 1928 3802 37 70 1170.6 1033.5 0.83 719 0.17 2391.0 5.9 
 81.3 3.7 299.9 1928 3802 37 70 1130.4 1033.5 0.83 719 0.17 2391.0 5.9 
Km transport 
costs 

0.46 0.35 3.7 299.9 1928 3802 37 70 1121.5 1033.5 0.83 719 0.17 2391.0 5.9 
0.40 3.7 299.9 1928 3802 37 70 1171.1 1033.5 0.83 719 0.17 2391.0 5.9 
0.52 3.7 299.9 1928 3802 37 70 1270.3 1033.5 0.83 719 0.17 2391.0 5.9 

 0.58 3.7 299.9 1928 3802 37 70 1320.0 1033.5 0.83 719 0.17 2391.0 5.9 
Hourly 
transport 
costs 

34 25.5 3.7 299.9 1928 3802 37 70 1014.8 1033.5 0.83 719 0.17 2391.0 5.9 
29.8 3.7 299.9 1928 3802 37 70 1141.7 1033.5 0.83 719 0.17 2391.0 5.9 
38.3 3.7 299.9 1928 3802 37 70 1323.7 1033.5 0.83 719 0.17 2391.0 5.9 

 42.5 3.7 299.9 1928 3802 37 70 1426.7 1033.5 0.83 719 0.17 2391.0 5.9 
Load time 1.25 0.94 3.7 299.9 1928 3802 37 70 1155.0 1033.5 0.83 719 0.17 2391.0 5.9 
 1.09 3.7 299.9 1928 3802 37 70 1187.8 1033.5 0.83 719 0.17 2391.0 5.9 
 1.41 3.7 299.9 1928 3802 37 70 1280.9 1033.5 0.83 719 0.17 2391.0 5.9 
 1.56 3.7 299.9 1928 3802 37 70 1286.5 1033.5 0.83 719 0.17 2391.0 6.3 
Unload time 0.0114 0.009 3.7 299.9 1928 3802 37 70 1220.7 1033.5 0.83 719 0.17 2391.0 5.9 
 0.010 3.7 299.9 1928 3802 37 70 1207.1 1033.5 0.83 719 0.17 2391.0 5.9 
 0.013 3.7 299.9 1928 3802 37 70 1234.4 1033.5 0.83 719 0.17 2391.0 5.9 
 0.014 3.7 299.9 1928 3802 37 70 1220.7 1033.5 0.83 719 0.17 2391.0 5.9 
Handling cost 
fulltime 

16 12 5.5 294.7 1902 3729 36 71 1219.8 1032.1 0.84 718 0.17 2310.0 5.9 
14 4.0 297.2 1849 3765 36 69 1219.5 1032.1 0.83 718 0.17 2350.7 5.9 
18 6.5 285.7 1857 3778 36 72 1232.6 1044.4 0.83 727 0.17 2431.2 6.0 

 20 4.9 299.2 1912 3753 36 71 1224.0 1037.6 0.84 722 0.18 2472.3 5.9 
Handling cost 
stackers 

8.5 6.4 6.0 293.6 1879 3778 36 72 1225.3 1039.0 0.83 723 0.17 1875.8 5.9 
7.4 5.9 299.2 1837 3778 36 72 1225.3 1039.0 0.83 723 0.17 2132.7 5.9 

 9.6 5.8 298.6 1862 3756 36 71 1223.2 1036.2 0.84 721 0.17 2648.7 5.9 
 10.6 4.9 295.6 1832 3782 34 69 1221.6 1034.9 0.84 720 0.18 2906.7 5.9 
Drop cost 
multiplier 

2 1.5 3.7 299.9 1928 3802 37 70 1209.8 1021.2 0.83 719 0.17 2391.0 5.9 
1.75 3.7 299.9 1928 3802 37 70 1215.3 1027.3 0.83 719 0.17 2391.0 5.9 
2.25 3.7 299.9 1928 3802 37 70 1226.2 1039.6 0.83 719 0.17 2391.0 5.9 

 2.5 3.7 299.9 1928 3802 37 70 1231.6 1045.8 0.83 719 0.17 2391.0 5.9 
Max 
smoothing 
tariff 

50 37.5 3.7 299.9 1928 3802 37 70 1220.7 1033.5 0.83 719 0.17 2391.0 5.9 
43.8 3.7 299.9 1928 3802 37 70 1248.0 1033.5 0.83 719 0.17 2391.0 5.9 
56.3 3.7 299.9 1928 3802 37 70 1220.7 1033.5 0.83 719 0.17 2391.0 5.9 

 62.5 3.7 299.9 1928 3802 37 70 1248.0 1033.5 0.83 719 0.17 2391.0 5.9 
Target MAD 300 225 12.9 214 1773 3636 36 70 1295.1 1100.6 0.81 768 0.20 2392 6.3 
 262.5 8.3 259 1762 3644 34 69 1249.6 1058.1 0.82 737 0.17 2392 6.0 
 337.5 1.3 337 1864 3832 33 73 1217.0 1030.4 0.83 717 0.17 2391 5.9 
 375 0.6 355 1828 4030 35 71 1217.0 1030.4 0.84 717 0.17 2391 5.9 
Fraction 
concurrent 

Var -25% 5.7 291.1 1799 3770 34 71 1224.0 1037.6 0.84 722 0.18 2356.2 5.9 
-12.5% 4.9 295.1 1870 3734 37 71 1223.2 1036.2 0.83 721 0.17 2372.8 5.9 

 12.5% 5.5 294.1 1843 3778 35 72 1224.0 1037.6 0.83 722 0.17 2408.2 5.9 
 25% 5.5 295.5 1837 3805 36 70 1223.2 1036.2 0.83 721 0.17 2426.5 5.9 

Table 21: Sensitivity analysis, absolute results 
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Standard 

value 

Test 

value 

Average 

smoothing  

tariff 

MAD 

DC-load 

Minimal 

slot load 

Maximum 

slot load 

Min 

NrRoute

s 

Max 

NrRoutes 

Average 

Transportation 

CostsDC 

Average Transportation 

Costs Store 

Average 

Occupancy Rate 

Total 

NrLoads 

Average 

NrCombis/NrLoad

s 

Average 

Handlingcosts 

Average Delivery 

Frequency 

Standard, after smoothing 3.7 299.9 1928 3802 37 70 1220.7 1033.5 0.83 719 0.17 2391.0 5.9 

Drop tariff 167 125.3 37.3% -0.9% -2.9% -2.8% -2.7% 1.4% 0.9% -24.2% -0.9% 1.1% -1.1% 0.0% 1.1% 
146.1 21.3% -1.4% -2.4% -0.6% -2.7% 2.9% -2.0% -12.2% 0.5% 0.4% 0.4% -0.1% 0.4% 

 187.9 59.1% -0.1% -6.5% -1.8% -5.4% 1.4% 0.2% 12.8% 0.3% 0.3% 2.2% 0.0% 0.3% 
 208.8 61.8% -3.0% -5.4% -0.5% -2.7% 1.4% 0.1% 25.2% 0.3% 0.1% -0.1% 0.1% 0.1% 
Truck speed 65 48.8 - - - - - - 12.3% - - - - - - 
 56.9 - - - - - - 5.3% - - - - - - 
 73.1 - - - - - - -4.1% - - - - - - 
 81.3 - - - - - - -7.4% - - - - - - 
Km transport 
costs 

0.46 0.35 - - - - - - -8.1% - - - - - - 
0.40 - - - - - - -4.1% - - - - - - 
0.52 - - - - - - 4.1% - - - - - - 

 0.58 - - - - - - 8.1% - - - - - - 
Hourly 
transport 
costs 

34 25.5 - - - - - - -16.9% - - - - - - 
29.8 - - - - - - -6.5% - - - - - - 
38.3 - - - - - - 8.4% - - - - - - 

 42.5 - - - - - - 16.9% - - - - - - 
Load time 1.25 0.94 - - - - - - -5.4% - - - - - - 
 1.09 - - - - - - -2.7% - - - - - - 
 1.41 - - - - - - 4.9% - - - - - - 
 1.56 - - - - - - 5.4% - - - - - 6.8% 
Unload time 0.0114 0.009 - - - - - - - - - - - - - 
 0.010 - - - - - - -1.1% - - - - - - 
 0.013 - - - - - - 1.1% - - - - - - 
 0.014 - - - - - - - - - - - - - 
Handling cost 
fulltime 

16 12 49.4% -1.7% -1.4% -1.9% -2.7% 1.4% -0.1% -0.1% 0.3% -0.1% -1.5% -3.4% -0.1% 
14 9.2% -0.9% -4.1% -1.0% -2.7% -1.4% -0.1% -0.1% 0.0% -0.1% -0.7% -1.7% -0.1% 
18 74.4% -4.7% -3.7% -0.6% -2.7% 2.9% 1.0% 1.1% -0.3% 1.1% 3.0% 1.7% 1.1% 

 20 31.7% -0.2% -0.8% -1.3% -2.7% 1.4% 0.3% 0.4% 0.8% 0.4% 5.3% 3.4% 0.4% 
Handling cost 
stackers 

8.5 6.4 61.6% -2.1% -2.6% -0.6% -2.7% 2.9% 0.4% 0.5% 0.0% 0.6% 0.3% -21.5% 0.6% 
7.4 59.3% -0.3% -4.8% -0.6% -2.7% 2.9% 0.4% 0.5% 0.2% 0.6% 1.9% -10.8% 0.6% 

 9.6 56.4% -0.4% -3.4% -1.2% -2.7% 1.4% 0.2% 0.3% 0.3% 0.3% 1.4% 10.8% 0.3% 
 10.6 32.4% -1.4% -5.0% -0.5% -8.1% -1.4% 0.1% 0.1% 0.9% 0.1% 5.6% 21.6% 0.1% 
Drop cost 
multiplier 

2 1.5 - - - - - - -0.9% -1.2% - - - - - 
1.75 - - - - - - -0.4% -0.6% - - - - - 
2.25 - - - - - - 0.4% 0.6% - - - - - 

 2.5 - - - - - - 0.9% 1.2% - - - - - 
Max 
smoothing 
tariff 

50 37.5 - - - - - - - - - - - - - 
43.8 - - - - - - 2.2% - - - - - - 
56.3 - - - - - - - - - - - - - 

 62.5 - - - - - - 2.2% - - - - - - 
Target MAD 300 225 249.3% -28.6% -8.0% -4.4% -2.7% - 6.1% 6.5% -2.5% 6.8% 16.4% - 6.7% 
 262.5 124.5% -13.5% -8.6% -4.1% -8.1% -1.4% 2.4% 2.4% -1.7% 2.5% 0.6% - 2.4% 
 337.5 -63.6% 12.4% -3.3% 0.8% -10.8% 4.3% -0.3% -0.3% 0.6% -0.3% -2.2% - -0.3% 
 375 -83.4% 18.5% -5.2% 6.0% -5.4% 1.4% -0.3% -0.3% 1.3% -0.3% 0.3% - -0.3% 
Fraction 
concurrent 

Var -25% 53.7% -2.9% -6.7% -0.8% -8.1% 1.4% 0.3% 0.4% 1.2% 0.4% 7.0% -1.5% 0.4% 
-12.50% 32.6% -1.6% -3.0% -1.8% - 1.4% 0.2% 0.3% 0.1% 0.3% 0.5% -0.8% 0.3% 

 12.50% 47.6% -1.9% -4.4% -0.6% -5.4% 2.9% 0.3% 0.4% 0.2% 0.4% 1.2% 0.7% 0.4% 
 25% 47.6% -1.5% -4.7% 0.1% -2.7% - 0.2% 0.3% 0.1% 0.3% 2.2% 1.5% 0.3% 

Table 22: Sensitivity analysis, relative to the standard situation 



 

 

XX 

 

Appendix XII 

 

Standard 

value 

Extreme 

value 

Average 

smoothin tariff 

MAD DC 

load 

Minimal 

slotload 

Maximum 

slotload 

MinNrRo

utes 

MaxNrRo

utes 

AverageTPCo

stsDC 

AverageTPCost

sStore 

AverageOccupan

cyRate 

TotalNrL

oads 

AverageNrCombi/

NrLoads 

AverageHandlin

gcosts 

AverageDeliveryFre

quency 

Standard, after smoothing 3.7 299.9 1928 3802 37 70 1220.716 1033.5 0.83 719 0.17 2391.0 5.9 

Drop tariff 167 1 1.5 589.1 829 4023 16 73 1412.3 7.3 0.82 854 0.29 2390.5 7.0 

1000 8.6 296.0 1872 3700 35 68 1213.0 6147.5 0.84 714 0.17 2406.2 5.9 

Truck speed 65 1 3.7 299.9 1928 3802 37 70 30110.7 1033.5 0.83 719 0.17 2391.0 5.9 

500 3.7 299.9 1928 3802 37 70 828.0 1033.5 0.83 719 0.17 2391.0 5.9 

Km transport 

costs 

0.46 10^(-6) 3.7 299.9 1928 3802 37 70 823.7 1033.5 0.83 719 0.17 2391.0 5.9 

20 3.7 299.9 1928 3802 37 70 18083.4 1033.5 0.83 719 0.17 2391.0 5.9 

Hourly 

transport costs 

34 1 3.7 299.9 1928 3802 37 70 422.0 1033.5 0.83 719 0.17 2391.0 5.9 

500 3.7 299.9 1928 3802 37 70 12510.9 1033.5 0.83 719 0.17 2391.0 5.9 

Load time 1.25 0.01 3.7 299.9 1928 3802 37 70 959.8 1033.5 0.83 719 0.17 2391.0 5.9 

20 3.7 299.9 1928 3802 37 70 5165.9 1033.5 0.83 719 0.17 2391.0 5.9 

Unload time 0.0114 10^(-6) 3.7 299.9 1928 3802 37 70 1111.4 1033.5 0.83 719 0.17 2391.0 5.9 

1 3.7 299.9 1928 3802 37 70 10701.5 1033.5 0.83 719 0.17 2391.0 5.9 

Handling cost 

fulltime 

16 8.5 7.4 272.0 1873 3741 37 69 1229.6 1040.3 0.83 724 0.17 2234.4 5.9 

100 6.5 296.6 1846 3691 35 71 1232.1 1044.4 0.83 727 0.17 4121.0 6.0 

Handling cost 

stackers 

8.5 0.1 5.1 297.3 1878 3728 36 71 1224.0 1037.6 0.83 722 0.17 355.6 5.9 

16 4.7 293.9 1885 3720 35 69 1215.0 1028.0 0.84 715 0.17 4206.1 5.9 

Drop cost 

multiplier 

2 1.1 3.7 299.9 1928 3802 37 70 1201.1 1011.3 0.83 719 0.17 2391.0 5.9 

10 3.7 299.9 1928 3802 37 70 1395.3 1230.6 0.83 719 0.17 2391.0 5.9 

Max smoothing 

tariff 

50 1 0.5 470.3 1314 3967 26 72 1217.4 1030.7 0.85 717 0.18 2391.5 5.9 

100 3.7 299.9 1928 3802 37 70 1220.7 1033.5 0.83 719 0.17 2391.0 5.9 

Target MAD 300 240 7.4 214.3 1773 3636 36 70 1229.6 1040.3 0.83 768 0.20 2234.4 6.3 

400 0.6 355.3 1828 4032 35 71 1217.4 1030.7 0.84 717 0.17 2391.8 5.9 

Fraction 

concurrent 

Var 0 for all i 4.5 297.4 1870 3828 37 73 1224.0 1037.6 0.83 722 0.17 2249.9 5.9 

1 for all i Error, does not satisfy LP-constraint 

         Stacker 

capacity 

Var max(D(t)) 4.7 293.9 1885 3720 35 69 1215.0 1028.0 0.84 715 0.17 4206.1 5.9 

10000 3.7 299.9 1928 3802 37 70 1220.7 1033.5 0.83 719 0.17 2391.0 5.9 

Table 23: Extreme value test, absolute results 

  



 

 

XXI 

 

 

Standard 

value 

Extreme 

value 

Average 

smoothin tariff 

MADDCl

oad 

Minimal 

slotload 

Maximum 

slotload 

 

MinNrRo

utes 

MaxNrRo

utes 

AverageTPCo

stsDC 

AverageTPCost

sStore 

AverageOccupan

cyRate 

TotalNrL

oads 

AverageNrCombi/

NrLoads 

AverageHandlin

gcosts 

AverageDeliveryFr

equency 

Standard, after smoothing 3.7 299.9 1928 3802 

 

37 70 1220.716 1033.5 0.83 719 0.17 2391.0 5.9 

Drop tariff 167 1 -60.9% 96.4% -57.0% 5.8% 
 

-56.8% 4.3% 15.7% -99.3% -1.5% 18.8% 73.3% 0.0% 18.8% 
1000 131.5% -1.3% -2.9% -2.7% 

 
-5.4% -2.9% -0.6% 494.8% 1.0% -0.7% 2.4% 0.6% -0.7% 

Truck speed 65 1 - - - - 
 

- - 2366.6% - - - - - - 
500 - - - - 

 
- - -32.2% - - - - - - 

Km transport 

costs 

0.46 10^(-6) - - - - 
 

- - -32.5% - - - - - - 
20 - - - - 

 
- - 1381.4% - - - - - - 

Hourly 

transport costs 

34 1 - - - - 
 

- - -65.4% - - - - - - 
500 - - - - 

 
- - 924.9% - - - - - - 

Load time 1.25 0.01 - - - - 
 

- - -21.4% - - - - - - 
20 - - - - 

 
- - 323.2% - - - - - - 

Unload time 0.0114 10^(-6) - - - - 
 

- - -9.0% - - - - - - 
1 - - - - 

 
- - 776.7% - - - - - - 

Handling cost 

fulltime 

16 8.5 100.0% -9.3% -2.9% -1.6% 
 

- -1.4% 0.7% 0.7% -0.3% 0.7% 1.8% -6.5% 0.7% 
100 76.0% -1.1% -4.3% -2.9% 

 
-5.4% 1.4% 0.9% 1.1% -0.8% 1.1% -0.3% 72.4% 1.1% 

Handling cost 

stackers 

8.5 0.1 36.9% -0.9% -2.6% -1.9% 
 

-2.7% 1.4% 0.3% 0.4% 0.2% 0.4% 0.4% -85.1% - 
16 27.9% -2.0% -2.2% -2.2% 

 
-5.4% -1.4% -0.5% -0.5% 0.6% -0.6% 0.6% 75.9% -0.6% 

Drop cost 

multiplier 

2 1.1 - - - - 
 

- - -1.6% -2.1% - - - - - 
10 - - - - 

 
- - 14.3% 19.1% - - - - - 

Max smoothing 

tariff 

50 1 -87.6% 56.8% -31.9% 4.3% 
 

-29.7% 2.9% -0.3% -0.3% 1.9% -0.3% 7.7% 0.0% -0.3% 
100 - - - - 

 
- - - - - - - - - 

Target MAD 300 240 100.0% -28.6% -8.0% -4.4% 
 

-2.7% - 0.7% 0.7% -0.3% 6.8% 17.6% -6.5% 6.8% 
400 -83.4% 18.5% -5.2% 6.0% 

 
-5.4% 1.4% -0.3% -0.3% 1.3% -0.3% 0.3% 0.0% -0.3% 

Fraction 

concurrent 

Var 0 for all i 21.1% -0.8% -3.0% 0.7% 
 

- 4.3% 0.3% 0.4% 0.0% 0.4% -1.2% -5.9% 0.4% 
1 for all i Error, does not satisfy LP-constraint 

Stacker 

capacity 

Var max(D(t)) 27.9% -2.0% -2.2% -2.2% 
 

-5.4% -1.4% -0.5% -0.5% 0.6% -0.6% 0.6% 75.9% 0.4% 
10000 - - - - 

 
- - - - - - - - - 

Table 24: Extreme value test, relative to the standard situation 

 


