1,765 research outputs found

    The (2+1)-d U(1) Quantum Link Model Masquerading as Deconfined Criticality

    Get PDF
    The (2+1)(2+1)-d U(1) quantum link model is a gauge theory, amenable to quantum simulation, with a spontaneously broken SO(2) symmetry emerging at a quantum phase transition. Its low-energy physics is described by a (2+1)(2+1)-d \RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. At the quantum phase transition, the model mimics some features of deconfined quantum criticality, but remains linearly confining. Deconfinement only sets in at high temperature.Comment: 4.5 pages, 6 figure

    Crystalline Confinement

    Full text link
    We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)(2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2)SO(2) global symmetry. The low-energy physics is described by a (2+1)(2+1)-d RP(1)\mathbb{R}P(1) effective field theory, perturbed by a dangerously irrelevant SO(2)SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.Comment: Proceedings of the 31st International Symposium on Lattice Field Theory - LATTICE 201

    Atomic structure of Mn wires on Si(001) resolved by scanning tunneling microscopy

    Full text link
    At submonolayer coverage, Mn forms atomic wires on the Si(001) surface oriented perpendicular to the underlying Si dimer rows. While many other elements form symmetric dimer wires at room temperature, we show that Mn wires have an asymmetric appearance and pin the Si dimers nearby. We find that an atomic configuration with a Mn trimer unit cell can explain these observations due to the interplay between the Si dimer buckling phase near the wire and the orientation of the Mn trimer. We study the resulting four wire configurations in detail using high-resolution scanning tunneling microscopy (STM) imaging and compare our findings with STM images simulated by density functional theory.Comment: 4 pages, 4 figure

    The potential negative impact of antibiotic pack on antibiotic stewardship in primary care in Switzerland: a modelling study.

    Get PDF
    BACKGROUND: In Switzerland, oral antibiotics are dispensed in packs rather than by exact pill-count. We investigated whether available packs support compliance with recommended primary care treatment regimens for common infections in children and adults. METHODS: Hospital-based guidelines for oral community -based treatment of acute otitis media, sinusitis, tonsillopharyngitis, community-acquired pneumonia and afebrile urinary tract infection were identified in 2017 in an iterative process by contacting hospital pharmacists and infectious diseases specialists. Furthermore, newly available national guidelines published in 2019 were reviewed. Available pack sizes for recommended solid, dispersible and liquid antibiotic formulations were retrieved from the Swiss pharmaceutical register and compared with recommended regimens to determine optimal (no leftovers) and adequate (optimal +/- one dose) matches. RESULTS: A large variety of recommended regimens were identified. For adults, optimal and adequate packs were available for 25/70 (36%) and 8/70 (11%) regimens, respectively. Pack-regimen matching was better for WHO Watch (optimal: 15/24, 63%) than Access antibiotics (optimal: 7/39, 18%). For the four paediatric weight-examples and 42 regimens involving child-appropriate formulations, optimal and adequate packs were available for only 14/168 (8%) and 27/168 (16%), respectively. Matching was better for older children with higher body and for longer treatment courses > 7 days. CONCLUSIONS: Fixed antibiotic packs often do not match recommended treatment regimens, especially for children, potentially resulting in longer than necessary treatments and leftover doses in the community. As part of national stewardship, a move to an exact pill-count system, including for child-appropriate solid formulations, should be considered

    Finite-Volume Energy Spectrum, Fractionalized Strings, and Low-Energy Effective Field Theory for the Quantum Dimer Model on the Square Lattice

    Get PDF
    We present detailed analytic calculations of finite-volume energy spectra, mean field theory, as well as a systematic low-energy effective field theory for the square lattice quantum dimer model. The analytic considerations explain why a string connecting two external static charges in the confining columnar phase fractionalizes into eight distinct strands with electric flux 14\frac{1}{4}. An emergent approximate spontaneously broken SO(2)SO(2) symmetry gives rise to a pseudo-Goldstone boson. Remarkably, this soft phonon-like excitation, which is massless at the Rokhsar-Kivelson (RK) point, exists far beyond this point. The Goldstone physics is captured by a systematic low-energy effective field theory. We determine its low-energy parameters by matching the analytic effective field theory with exact diagonalization results and Monte Carlo data. This confirms that the model exists in the columnar (and not in a plaquette or mixed) phase all the way to the RK point.Comment: 35 pages, 16 figure

    On number fields with nontrivial subfields

    Full text link
    What is the probability for a number field of composite degree dd to have a nontrivial subfield? As the reader might expect the answer heavily depends on the interpretation of probability. We show that if the fields are enumerated by the smallest height of their generators the probability is zero, at least if d>6d>6. This is in contrast to what one expects when the fields are enumerated by the discriminant. The main result of this article is an estimate for the number of algebraic numbers of degree d=end=e n and bounded height which generate a field that contains an unspecified subfield of degree ee. If n>max{e2+e,10}n>\max\{e^2+e,10\} we get the correct asymptotics as the height tends to infinity

    Two-dimensional Lattice Gauge Theories with Superconducting Quantum Circuits

    Get PDF
    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.Comment: Published versio

    Shuntchirurgie bei Hämodialysepatienten: Teil 1: Die Erstanlage

    Get PDF
    Zusammenfassung: Aufgrund der demografischen Entwicklung und der ansteigenden Prävalenz des Diabetes mellitus nimmt die Zahl dialysepflichtiger Patienten stetig zu. Bei vielen dieser Erkrankten stellt die Anlage einer autologen arterio-venösen Fistel eine echte Herausforderung dar. Erweist sie sich als unmöglich, muss der Gefäßchirurg mit alternativen Zugängen sowie den Vor- und Nachteilen von alloplastischen und heterologen Prothesen vertraut sein (Teil 1). Früh- und Spätkomplikationen wie Aneurysmen, Stenosen, Verschlüsse, Infekte und Steal-Syndrom sind in der Shuntchirurgie häufig und sollten nach heute gültigen Richtlinien behandelt werden (Teil 2

    Shuntchirurgie bei Hämodialysepatienten: Teil 2: Revisionen

    Get PDF
    Zusammenfassung: Aufgrund der demografischen Entwicklung und der ansteigenden Prävalenz des Diabetes mellitus steigt die Zahl dialysepflichtiger Patienten stetig an. Bei vielen dieser Erkrankten stellt die Anlage einer autologen arterio-venösen Fistel eine echte Herausforderung dar. Im ersten Teil wurde die Thematik der Neuanlage von Hämodialysezugängen besprochen. Früh- und Spätkomplikationen von Shunts wie Stenosen, Verschlüsse, Aneurysmen, Infekte und Steal-Syndrom sind bei dieser chirurgischen Technik häufig und müssen nach heute gültigen Richtlinien behandelt werden, was in diesem 2. Teil abgehandelt wir

    Avalanches and Dynamical Correlations in supercooled liquids

    Full text link
    We identify the pattern of microscopic dynamical relaxation for a two dimensional glass forming liquid. On short timescales, bursts of irreversible particle motion, called cage jumps, aggregate into clusters. On larger time scales, clusters aggregate both spatially and temporally into avalanches. This propagation of mobility, or dynamic facilitation, takes place along the soft regions of the systems, which have been identified by computing isoconfigurational Debye-Waller maps. Our results characterize the way in which dynamical heterogeneity evolves in moderately supercooled liquids and reveal that it is astonishingly similar to the one found for dense glassy granular media.Comment: 4 pages, 3 figure
    corecore