
Annals of Physics 351 (2014) 634–654

Contents lists available at ScienceDirect

Annals of Physics

journal homepage: www.elsevier.com/locate/aop

Two-dimensional lattice gauge theories with
superconducting quantum circuits
D. Marcos a,∗, P. Widmer b, E. Rico c, M. Hafezi d,e, P. Rabl f,
U.-J. Wiese b, P. Zoller a,g
a Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020
Innsbruck, Austria
b Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern, Switzerland
c IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
d Joint Quantum Institute, NIST/University of Maryland, College Park 20742, USA
e Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics,
University of Maryland, College Park, MD 20742, USA
f Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien, Austria
g Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria

a r t i c l e i n f o

Article history:
Received 19 August 2014
Accepted 10 September 2014
Available online 19 September 2014

Keywords:
Quantum simulation
Superconducting qubits
Gauge theories

a b s t r a c t

A quantum simulator of U(1) lattice gauge theories can be imple-
mented with superconducting circuits. This allows the investiga-
tion of confined and deconfined phases in quantum link models,
and of valence bond solid and spin liquid phases in quantum dimer
models. Fractionalized confining strings and the real-time dynam-
ics of quantum phase transitions are accessible as well. Here we
show how state-of-the-art superconducting technology allows us
to simulate these phenomena in relatively small circuit lattices.
By exploiting the strong non-linear couplings between quantized
excitations emerging when superconducting qubits are coupled,
we show how to engineer gauge invariant Hamiltonians, including
ring-exchange and four-body Ising interactions. We demonstrate
that, despite decoherence and disorder effects, minimal circuit in-
stances allow us to investigate properties such as the dynamics of
electric flux strings, signaling confinement in gauge invariant field
theories. The experimental realization of thesemodels in larger su-
perconducting circuits could address open questions beyond cur-
rent computational capability.
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1. Introduction

Since the pioneering experiments showing quantized coherent excitations in electrical circuits
[1,2], superconducting circuits including Josephson junctions are playing a fundamental role to
demonstrate quantum effects at a mesoscopic level and, remarkably, in quantum information
processing. The enormous recent progress in this field comprises, for example, the realization of
quantum teleportation [3] and complex two- and three-qubit algorithms, including number factoring
and quantum error correction [4–8]. From the viewpoint of analog quantum simulation, the large
coherence times and non-linearities achieved with superconducting qubits [9–12] have opened
frontiers towards the simulation of Hubbard models with photonic excitations and, as a by-product,
the emulation of classical static fields in circuit lattices [13–15].

A newperspective in quantum simulation is tomimic fundamental interactions, such as those aris-
ing in field theories [16], and in particular, lattice gauge theories [17]. In elementary particle physics,
dynamical quantumgauge fieldsmediate fundamental interactions [18–20]. In condensedmatter sys-
tems such as spin liquids, dimermodels, and presumably in high-temperature superconductors, gauge
fields emerge as relevant low-energy degrees of freedom [21–25]. Solving these theories is, however,
fundamentally challenging. Classical simulations typically rely on Monte Carlo methods which may
suffer from severe sign problems, which imply that real-time dynamics and certain exotic phases are
so far out of reach. The quantum simulation of dynamical gauge fields is thus attracting a great deal
of interest, giving rise to a variety of recent proposals, mainly based on cold atoms in optical lattices
[26–37].

Here we show how different gauge invariant models can be simulated with superconducting
circuits. This platform offers on-chip highly-tunable couplings, and local control over basic modules
that can be interconnected, enabling – in principle – scalability. Specifically, in this work we focus
our attention on two-dimensional U(1) gauge theories, and show how ring-exchange interactions,
present in dimer models, and plaquette terms arising in lattice gauge theories, can be engineered
with quantum circuits under realistic dissipative conditions. We will illustrate this by constructing
gauge invariant models in a superconducting-circuit square lattice. As we will show, even in the
presence of excitation loss and disorder, distinctive features of the gauge theory, such as confinement
and string dynamics, can be observed in relatively small circuit lattices. The implementation of
these gauge invariant interactions generalizes previous proposals based on cold atoms [26–38], as
well as pioneering studies in this area with Josephson-junction arrays [39], trapped ions [40], and
superconducting circuits [41].

To quantum simulate dynamical gauge fields, we use the framework of quantum link models
[42–44]. In this formulation, the gauge field is represented by quantum degrees of freedom residing
on the links that connect neighboring lattice sites. In contrast toWilson’s lattice gauge theory [18,19],
quantum link models have a finite-dimensional Hilbert space per link, and provide an alternative
non-perturbative regularization of gauge theories. This, on the one hand, leads to new theories beyond
theWilson framework, and, on the other hand, allows us to address the standard gauge field theories
relevant in particle physics. For example, quantum chromodynamics (QCD) emerges from an SU(3)
invariant quantum linkmodel by dimensional reduction [45]. In this framework, continuously varying
gluon fields are not put in by hand, but emerge dynamically as collective excitations of discrete
quantum link degrees of freedom, and chiral quarks can be incorporated naturally as domain wall
fermions. Quantum electrodynamics and other gauge field theories relevant in particle physics can be
regularizedwith quantum links along the same lines. Herewe focus our attention on the simplestU(1)
lattice gauge theories that can be realized with quantum links. While they are not directly connected
with particle physics, they share qualitative features with QCD, including the existence of confining
flux strings. In addition, they are of interest in the context of the condensedmatter physics in strongly
correlated electron systems.

For a U(1) quantum link model, the link degrees of freedom may be represented by spin S =
1
2

operators. Quantum dimer models have the same Hamiltonian as the U(1) quantum link model, but
operate in a static background of ‘‘electric’’ charges. Upon doping, quantum dimermodels may realize
Anderson’s resonating valence bond scenario of high-temperature superconductivity [46]. In this case,
confinement manifests itself in valence bond solid phases, while deconfinement is associated with
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quantum spin liquids. Confinement is characterized by the energy of the electric flux strings that
connect charge and anticharge, andwhose energy is proportional to the string length. In quantum link
and quantum dimer models the strings fractionalize into strands of electric flux 1

2 [47,48] and 1
4 [49],

respectively. Of specific interest in the context of quantum simulation are dynamical properties,
such as the evolution after a quench [50]. In our lattice gauge theory, the time evolution of the
confining strings is beyond current computational capability for relatively small lattices, and as we
show below, could be addressed with a quantum simulator based on superconducting circuits. In
particular, it would be interesting to investigate how an initially prepared confining string separates
into fractionalized strands as a function of time, a process that is also relevant from a condensed
matter perspective in the context of quantum dimer models. Although here we concentrate on small
superconducting-circuit lattices that can be built with current superconducting-circuit technology, in
the future, larger systems could be built to investigate subtle aspects of the string dynamics, both at
the roughening transition and near a bulk phase transition, which can be captured by a low-energy
effective string theory [47,48]. In this sense, the proposed devices can be used to study ‘‘string theory
on a chip’’.

The paper is organized as follows. In Section 2 we introduce quantum link and quantum dimer
models, emphasizing their gauge symmetry. We construct the corresponding Hamiltonians and
discuss associated phenomena, in particular, the dynamics of confining strings. In Section 3 we
show how the gauge invariant models of interest can be simulated with a superconducting-circuit
architecture. Specifically, we analyze in detail the building blocks that compose the circuit lattice, and
demonstrate how, for realistic parameters, the systemcanbe tuned via externalmagnetic fields to give
access to different parameter regimes, and thus the corresponding phases of the model. In Section 4
we propose a minimal experiment to demonstrate ring-exchange dynamics in a single plaquette. In
Section 5we study the physics associatedwith the competing energy scales of ourmodel. In particular,
we show how a bulk phase transition manifests itself in the behavior of a particular lattice state, and
discuss the physics associated with electric flux strings. Our simulations of minimal instances pave
the way towards experiments on small lattices to demonstrate dynamical effects in equilibrium and
out-of-equilibrium gauge systems, which have been out of reach so far. In Section 6 we present our
conclusions and discuss possible directions for future developments.

2. Quantum link and quantum dimer models

In this workwe consider the implementation of variousU(1) gauge theories on a two-dimensional
lattice, using the quantum linkmodel (QLM) formulation of lattice gauge theories. As already outlined
in the Introduction, QLMs are lattice gauge theories with a finite-dimensional Hilbert space per link,
whichmakes them ideally suited for quantum simulation. Moreover, prominentmodels in condensed
matter physics, such as quantum spin ice or quantum dimer models, naturally fall in this theoretical
framework [24]. The purpose of this section is to establish the main concepts and a common notation
used in the later parts of the paper. For an introduction to Wilson’s standard formulation of lattice
gauge theories the reader is referred to [18–21].

2.1. U(1) quantum link models

In the Hamiltonian formulation of Wilson-type Abelian lattice gauge theories – such as quantum
electrodynamics (QED) – the dynamical gauge fields are represented by variables Uij = exp(iϕij) ∈

U(1) that live on the links between two neighboring lattice sites i and j. Hereϕij =
 j
i d⃗l·A⃗ corresponds

to the phase accumulated by a charged particle moving from i to j in the presence of a vector potential
A⃗. Associated to each link variable, there is a canonically conjugate electric flux operator Eij = −i∂ϕij
[see Fig. 1(a)], which obeys the commutation relations

[Eij,Uij] = Uij, [Eij,U
Ď
ij ] = −UĎ

ij . (1)

InWilson’s lattice gauge theory the operator Eij acts on an infinite-dimensional local linkHilbert space,
with eigenstates Eij|eij⟩ = eij|eij⟩ and eigenvalues eij ∈ Z. The commutation relations (1) imply that



D. Marcos et al. / Annals of Physics 351 (2014) 634–654 637

Fig. 1. (Color online) (a) In a U(1) lattice gauge theory, the electric field is represented by operators Eij that live on the links
of a (two-dimensional) lattice. An eigenstate |eij⟩ of the electric field operator Eij is represented by a flux arrow from site i
to the neighboring site j. The plaquette operators U� = UijUjkUkℓUℓi act on the four electric flux states around a plaquette.
(b) Mapping between an electric flux configuration and the corresponding spin states of the S =

1
2 quantum link

model. (c) Action of the plaquette operators on the electric flux and spin S =
1
2 representation. (d) Illustration of the Gauss

law.

Uij and UĎ
ij act as raising and lowering operators of the electric flux eij, respectively. Here we use the

convention that positive eigenvalues, eij > 0, correspond to a flux from site i to site j. In the lattice
formulation, the dynamics of the gauge fields is described by a Hamiltonian of the form

H =
g2

2


⟨ij⟩

E2
ij −

1
4g2


�


U� + UĎ

�


,

U� = UijUjkUkℓUℓi = exp{i(ϕij + ϕjk + ϕkℓ + ϕℓi)} = exp{iΦ}.

(2)

Here ⟨i, j⟩ denotes a pair of nearest-neighbor sites, and � denotes an elementary plaquette. The
first term in Eq. (2) can be identified with the electric field energy, while the plaquette operator U�

measures the gauge invariant magnetic flux through a single plaquette,Φ ≡

d2σ⃗ · (∇⃗ × A⃗). Hence,

the second term in Eq. (2) is identified with the magnetic field energy.
In the lattice formulation of U(1) gauge theories, the invariance of the underlying continuum

theory under gauge transformations of the vector potential, A⃗′
= A⃗−∇⃗α, corresponds to an invariance

of the Hamiltonian (2) under lattice gauge transformations of the form

U ′

ij = VUijV Ď
= exp(iαi)Uij exp(−iαj),

E ′

ij = VEijV Ď
= Eij.

(3)

Here V =


m exp{iαmGm} is a unitary operator that implements a general gauge transformation.
Using the commutation relations between Eij and Uij, one can convince oneself that the infinitesimal
generator of a gauge transformation at sitem is given by

Gm = Eim + Ekm − Emj − Emℓ. (4)

Note that [H,Gm] = 0, so that the site charges Qm, satisfying Gm|ψ⟩ = Qm|ψ⟩, are local conserved
quantities under the time-evolution generated by H . In other words, for a specified charge configura-
tion {Qm}, the Gauss law (Gm − Qm)|ψ⟩ = 0 (for all m) defines a subset of physical states, where at
each vertex the sum of incoming and outgoing fluxes is equal to the total charge at vertexm, Qm. This
condition is the lattice version of the usual Gauss law, ∇⃗ · E⃗ = ρ, for a continuous charge density ρ.

The U(1) QLM shares many features with the standard Wilson theory, but it uses a finite-
dimensional representation of the local algebra [Eij,Uij] = Uij. This is possible because in QLMs the
link variablesUij andUĎ

ij are no longer complex numbers, but non-commuting operators. The quantum
link operators obey [Uij,U

Ď
ij ] = 2Eij, which implies that Uij, U

Ď
ij , and Eij generate an SU(2) embedding

algebra on each link. U(1) QLMs can be realized with any finite-dimensional spin S representation of
the SU(2) algebra. In this case the electric flux on each link can only assume a finite set of discrete
integer or half-integer values eij. The electric flux operator can then be identified with the third
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Fig. 2. (Color online) Action of the ring-exchange Hamiltonian on flippable plaquettes. (a) Flow of electric flux through the
links of the lattice. (b) Dimer covering. (c) Spin 1

2 representation.

component of a spin S operator, Szij , and the quantum link variables are the corresponding raising and
lowering operators, S±

ij . More precisely, as illustrated in Fig. 1(b) for the case of S =
1
2 , the positive flux

states around a single plaquette aremapped alternatingly into spin up and spin down states, according
to Eij = Szij and Uij = S−

ij or Eij = −Szij and Uij = S+

ij [see Fig. 1 for the mapping between fluxes and
spins]. With this convention, the generators of the symmetry defined above are given by

Gm = Szim + Szkm + Szmj + Szmℓ, (5)

and the neutral subspace of the Hilbert space now corresponds to configurations with two spin up
and two spin down states around each lattice site.

The generators Gm commute with the electric fluxes Eij = Szij and with the plaquette operators
U� = S+

ij S
−

jk S
+

kℓS
−

ℓi . The spin S representation of the Hamiltonian (2) is then again invariant under U(1)
gauge transformations. A special scenario arises for the minimal S =

1
2 representation, where the

electric-field energy of Eq. (2) is E2
ij = (Szij)

2
=

1
4 , and thus only contributes as a constant energy

shift. In this case, a gauge invariant extension of the gauge field Hamiltonian can be considered, for
example, of the form [47,48]

H = −J


�


U� + UĎ

� − λ

U� + UĎ

�

2
, (6)

where


� denotes the sum over all plaquettes. The first term (‘‘kinetic energy’’) inverts the
direction of the electric flux around flippable plaquettes, while the second term (‘‘potential energy’’)
favors the formation of flippable plaquettes. These terms are also known as ‘‘ring-exchange’’ and
‘‘Rokhsar–Kivelson’’ interactions, respectively. This Hamiltonian is gauge invariant, as it commutes
with the generators of infinitesimal U(1) gauge transformations Gm given above.

The physics and phase diagram of this model is quite rich. At zero temperature, the model is
confining for λ < 1, while at high temperatures, T > Tc , it has a deconfining phase. At a critical
coupling λc there is a quantum phase transition, which separates two distinct confined phases with
spontaneously broken translation symmetry. The phase at λ < λc has, in addition, a spontaneously
broken charge conjugation symmetry. The phase transition that separates the two confined phases is
a weak first-order transition, but mimics several features of deconfined quantum critical points [47].

2.2. Quantum dimer models

In condensed matter physics, a closely related class of models are the so-called quantum dimer
models. As we will see, they are also U(1) gauge invariant, and describe the short-range resonating
valence bond states proposed by Anderson [46], realizing valence bond solid or quantum spin liquid
phases. Here, a dimer represents a singlet state formed by two electrons located at nearest-neighbor
sites of a two-dimensional square lattice. Within the dimer model, the number of valence bonds is
conserved, but they can rearrange themselves in such a way that each site shares exactly one dimer
with one of the neighboring sites.

In quantum dimer models, the degrees of freedom account for the presence or absence of a dimer
on each link. According to the dimer covering constraint, two dimers cannot touch each other, but can
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Fig. 3. (Color online) Illustration of possible strings of electric flux between a particle–antiparticle pair. Intrinsic properties of
the string, such as its tension andwidth, contain fundamental information about confinement. Herewe show two configurations
with external chargesQ = ±1 (left) andQ = ±

1
2 (right) at the boundaries. Flux strings connect the chargewith the anticharge.

The zig-zag boundary allows the Gauss law to be satisfied at the edges of the system.

be located at opposite links of a lattice plaquette. The short-range dimer Hamiltonian can be written
as [51]

Hdimer = −J


�


| ⟩⟨ | + | ⟩⟨ |


− λ


| ⟩⟨ | + | ⟩⟨ |


, (7)

where | ⟩ and | ⟩ denote states with two dimers located vertically and horizontally, respectively,
on opposite links of a plaquette. The relation between the dimer model and the spin 1

2 QLM can be
established by identifying the presence of a dimer with the state eij = +

1
2 and the absence with the

state eij = −
1
2 . With this identification, the Hamiltonian is recast into the form

Hdimer = −J


�

(B� − λB2
�), (8)

where B� = S+

ij S
−

ik S
+

kℓS
−

jℓ + H.c., and which, using U� = S+

ij S
−

jk S
+

kℓS
−

ℓi , corresponds to the quantum
link model Hamiltonian (6) [c.f. Fig. 2 for the action of the ring-exchange interaction in lattice gauge
theories, quantum dimer models, and quantum link models]. Although the U(1) QLM and the dimer
model share the same Hamiltonian, they differ in the realization of the Gauss law constraint, which
for the dimer model is given by

Qm = eim + ekm + emj + emℓ = −1. (9)

This constraint ensures that exactly one dimer touches each lattice site. On the square lattice, around
each site there are three links without a valence bond and just one link that carries a dimer. For λ < 1,
the square lattice quantum dimer model exists in a confining columnar phase that extends to the
Rokhsar–Kivelson point at λ = 1, a deconfined critical point at zero temperature.

2.3. Confinement and string dynamics

As mentioned above, the Gauss law, Gm|ψ⟩ = 0, can be violated by installing a charge–anticharge
pair at two lattice sites. In this situation, the electric flux flows from particle to antiparticle [see
Fig. 3 for illustrative examples and Fig. 4 for an exact-diagonalization calculation], creating strings
of flux whose tension and internal structure provide information about confinement: a string has
an energy proportional to its length, with the string tension being the proportionality factor. In the
two-dimensional U(1) QLM a string connecting two particles of charge Qm = ±2 separates into four
mutually repelling strands, each carrying fractional electric flux 1

2 . Similarly, a string connecting
particles of charge Qm = ±1 splits into two strands.

The excitation spectrum of the strings contains further physically relevant information. For
example, it is interesting to see how the electric fluxes spread on the lattice in the transverse direction.
This determines whether the strings separate into mutually repelling strands and whether they are
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Fig. 4. Electric-field distribution for the ground state of the ring-exchange Hamiltonian (10) on a square lattice, using
exact diagonalization. We have chosen open zig-zag boundaries in order to fulfil the Gauss law at each vertex. However, a
charge–anticharge pair has been created at the edges by violating the Gauss law at those sites, giving rise to electric flux
strings. The magnitude of the propagating electric flux is indicated on each link, and can be experimentally measured by taking
snapshots of the spin distribution from an initially-prepared state.

rigid or rough. If the strings are rough, a continuum effective string theory describes their low-energy
dynamics, which predicts that the width of the transverse string fluctuations grows logarithmically
with the distance between the particle–antiparticle pair. The parameters of the effective string theory,
such as the string tension and the intrinsic string width are measurable quantities. Below we present
a roadmap for different experiments in small systems that begin to address these issues.

2.4. Building blocks for simulating static and dynamical properties of quantum link models

Given the broad interest in quantum link and quantum dimer models and their relevance in vari-
ous areas of physics, in the remainder of this paper we address the controlled implementation of such
models using coupled superconducting circuits. The main challenge in artificially engineering inter-
actions of the type (8) is to realize the plaquette interactions between multiple spins. In this respect,
superconducting circuits are potentially beneficial. First, different circuit elements can simply be con-
nected via electrical wires. Second, the extremely large couplings and low losses observed in these
systems allow the design of high-order interaction terms, which are sufficiently strong compared to
the relevant decoherence energy scales. However, the fabrication and control of large arrays of super-
conducting qubits is still under development. Thus, it is the purpose of this work to first of all describe
and analyze the implementation of the essential building blocks of QLMs, and to discuss the minimal
settingswhich are required to observe precursors of the physical phenomena outlined above. Thiswill
provide a roadmap for constructing larger systems in a bottom-up approach.

Of central interest to this work is the implementation of the ring-exchange plaquette interaction,
H� = −J(U� + UĎ

�), which can be written in the spin notation as

H� = −J

S+

ij S
−

ik S
+

kℓS
−

jℓ + H.c.

. (10)

As already mentioned above, this interaction flips the spins around a plaquette and thus represents a
delocalizing kinetic energy contribution. Besides the potential energy contribution H2

� of Eq. (6), we
also consider a two-body spin interaction and first analyze the physics of the model

H = −J


�

S+

ij S
−

ik S
+

kℓS
−

jℓ + H.c.+ V


SzijS
z
jk, (11)

where the last (gauge invariant) term represents an Ising-type coupling between adjacent link spins
on each plaquette, whichwill be denoted by the symbol in the sums, and favors spin configurations
with a specific local magnetization. This model can be viewed as the simplest non-trivial extension of
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Fig. 5. Circuit lattice for the simulation of the model (11). Every plaquette contains a qubit (e.g. a transmon) on the links.
Hopping and Kerr interactions of local excitations are enabled by a capacitor in parallel with a Josephson junction connecting
neighboring qubits, giving rise to SzijS

z
jk interactions, and – perturbatively – to ring-exchange dynamics. The tunneling term

through each vertex may be suppressed by choosing appropriately the value of the parallel capacitor to the Josephson
junction.

the pure ring-exchange interaction, and it exhibits a quantum phase transition as a function of J/V .
Like in the QLM of Eq. (6), the transition separates two distinct confined phases.

A more general gauge invariant model for spin 1
2 is given by the Hamiltonian

H = −J


�


S+

ij S
−

ik S
+

kℓS
−

jℓ + H.c.

+ V


SzijS

z
jk + W


�

SzijS
z
ikS

z
kℓS

z
jℓ. (12)

Here, in addition to the two-body interaction,we have included a four-body plaquette term that favors
an odd number of spins pointing along the same direction around every plaquette. The combination
of ring-exchange, two-body nearest-neighbor interaction, and four-body plaquette interaction, gives
a large class of models that, as we show below, can be quantum simulated with superconducting cir-
cuits. Next, we show the corresponding implementation, and how the associated nontrivial dynamics
can be probed in experiments.

3. Superconducting circuit implementation

The ring-exchange Hamiltonian (10) involves non-local four-body interactions, which do not ap-
pear naturally in superconducting circuits or systems with dipolar interactions. In the following, we
describe how this type of interactions can be implemented using quantized excitations in electrical
circuits. As a concrete example, wewill focus on a circuit layout based on ‘transmon’ qubits [52]; how-
ever, the scheme is quite general and can be adapted to other superconducting-qubit implementations
as well.

3.1. General approach

Let us consider the general circuit lattice depicted in Fig. 5. On each link the lowest two energy
levels of a strongly coupled superconducting circuit (qubit) are used to implement an effective
spin 1

2 system, representing the gauge field, as described in Section 2. Neighboring spins on each
plaquette and across each node are connected by Josephson junctions, which induce nearest-neighbor
interactions. By an appropriate choice of parameters, the resulting Hamiltonian of the circuit lattice
takes the form

H = ε

⟨ij⟩

Szij −Ω

+

SzijS
z
jk −Ω ′


SzijS

z
jk − µ


(S+

ij S
−

jk + H.c.), (13)
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where ε is the bare frequency splitting between qubit states (the sum


⟨ij⟩ involves nearest-neighbor
lattice sites). The interactionsΩ andΩ ′ are diagonal coupling constants for qubits located on opposite
sides of each lattice site andneighboring qubitswithin the sameplaquette, respectively [see Fig. 5] (the
sum


+
denotes qubits around vertices, and the sum


involves nearest-neighbor links around a

plaquette). In addition, neighboring qubits located within the same plaquette are coupled by a small
hopping term ∼µ. By defining V ′

= Ω −Ω ′ and omitting an overall frequency shift, we can rewrite
the Hamiltonian (13) as

H = ε

⟨ij⟩

Szij −Ω

m

G2
m + V ′


SzijS

z
jk − µ


(S+

ij S
−

jk + H.c.), (14)

where for each site Gm = Szim + Szkm + Szmj + Szmℓ is the gauge generator introduced above. Under the
assumption that the system is initially prepared in the subspace of states with exactly two spins up
and two spins down around each site, Gm|ψ⟩ = 0 for all m, transitions out of this subspace are sup-
pressed by a large energy gapΩ . In the limit µ, V ′

≪ Ω we can use perturbation theory to derive an
effective Hamiltonian for this subspace, which is given by

Heff = ε

⟨ij⟩

Szij + V


SzijS
z
jk − J


�

(S+

ij S
−

ik S
+

kℓS
−

jℓ + H.c.), (15)

where

J =
4µ2

Ω
, V = V ′

− J. (16)

Apart from the overall qubit energy ∼ε, which does not affect the dynamics in the gauge invariant
subspace, this effective Hamiltonian reproduces the gauge invariant model (11). In particular, taking
V = 0, the standard ring-exchange interaction (10) is recovered. An interaction of the type SzijS

z
ikS

z
kℓS

z
jℓ

(arising in the RKmodel) requires an additional circuit element, whichwill be discussed in Section 3.4.

3.2. Circuit model

We now show how the aforementioned interactions can be implemented using superconducting
circuits, in particular using transmon qubits on the links of a two-dimensional lattice [c.f. Fig. 5]. A
single transmon consists of a capacitance C in parallel with a Josephson junction with energy EJ . This
circuit is described by a Hamiltonian

Htransmon =
Q 2

2C
− EJ cos


φ

φ0


, (17)

where Q and φ are the canonically conjugate charge and flux operators, obeying [φ,Q ] = i, and
φ0 = 1/(2e) is the reduced flux quantum (φ0 ≈ 0.33×10−15 Wb) [here we take h̄ ≡ 1]. In the regime
where the Josephson energy EJ dominates over the charging energy EC = e2/(2C), the flux fluctuations
are small compared to φ0, and the cosine potential in Eq. (17) can be expanded in powers of φ/φ0. Up
to fourth order in this expansion, we then obtain the Hamiltonian of a non-linear oscillator [52]

Htransmon ≈
Q 2

2C
+ EJ

φ2

2φ2
0

− EJ
φ4

24φ4
0

≈ εaĎa −
U
2
aĎaĎaa, (18)

where we have introduced annihilation and creation operators a and aĎ according to

Q
2e

=
4


EJ
8EC

i(aĎ − a)
√
2

,
φ

φ0
=

4


8EC
EJ

(a + aĎ)
√
2

. (19)

For typical experimental parameters, the qubit frequency ε =

8ECEJ − U is several GHz, and the

strength of the nonlinearity U ≈ EC is around several 100 MHz [53]. Assuming that this nonlinearity
is sufficiently large to prevent transitions into states with n ≥ 2 excitations, the dynamics of the
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Fig. 6. Basic building block for the lattice gauge theory architecture shown in Fig. 5. Two superconducting qubits (transmons)
are coupled through a Josephson junction in parallel with a capacitor. This enables hopping and Kerr interactions between
quantized photonic excitations at nodes 1 and 2. The value of the capacitor can be chosen appropriately in order to control the
hopping of excitations.

transmon can be restricted to the lowest two oscillator states, | ↓⟩ ≡ |0⟩ and | ↑⟩ ≡ |1⟩, andmodeled
by a spin 1

2 Hamiltonian,

Htransmon ≈ εSz . (20)

To implement interactions between neighboring qubits, we now consider the basic building block
shown in Fig. 6. Here two transmons are connected via an additional Josephson junction with energy
E(Q )J in parallel with a capacitor CQ . The associated Hamiltonian is [41,54,55]

H =
1
2
Q⃗C−1Q⃗ T

−


ℓ=1,2

E(ℓ)J cos

φℓ

φ0


− E(Q )J cos


φ1 − φ2

φ0


, (21)

where Qℓ and φℓ are the charge and flux operators at a node ℓ, Q⃗ ≡ (Q1,Q2), and

C =


C1 + CQ −CQ

−CQ C2 + CQ


, (22)

is the capacitance matrix. As above, for small phase fluctuations we can expand the cosine functions
and write the resulting Hamiltonian as

H =


ℓ=1,2

Hℓ + Hint. (23)

Here,

Hℓ =
Q 2
ℓ

2C̄ℓ
+


E(ℓ)J + E(Q )J

 φ2
ℓ

2φ2
0

−


E(ℓ)J + E(Q )J

 φ4
ℓ

24φ4
0
, (24)

are the modified Hamiltonians for each qubit, where

C̄1 = C1 +
C2CQ

C2 + CQ
, C̄2 = C2 +

C1CQ

C1 + CQ
. (25)

By assuming that CQ < Cℓ and E(Q )J < E(ℓ)J , the coupling junction does not qualitatively change the
single-qubit Hamiltonians, Hℓ ≈ εℓSzℓ , with slightly modified frequencies εℓ. The remaining interac-
tion Hamiltonian is given by

Hint ≈
CQ

C1C2
Q1Q2 −

E(Q )J

φ2
0
φ1φ2 −

E(Q )J

4φ4
0
φ2
1φ

2
2 +

E(Q )J

6φ4
0


φ1φ

3
2 + φ3

1φ2

, (26)

and when projected onto the spin subspace of interest, we obtain

Hint ≈ −
Ω

2
(Sz1 + Sz2)− µ(S+

1 S−

2 + S−

1 S+

2 )−ΩSz1S
z
2. (27)
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We notice that here the subindexes 1 and 2 refer to respective circuit nodes of Fig. 6, which are lo-
cated on the links of the two dimensional lattice of Fig. 5. The first term in this Hamiltonian is a small
frequency shift, which can be absorbed into a redefinition of the qubit frequency, εℓ → εℓ − Ω/2.
The other two contributions represent a spin flip-flop and an Ising-type spin–spin interaction with
coupling strengths

µ =
ε

2


E(Q )J

EJ
−

CQ

C


−Ω, Ω = U

2E(Q )J

EJ
, (28)

where we have assumed E(1)J = E(2)J ≡ EJ . Still under the assumption that the capacitance CQ and
the Josephson energy E(Q )J are sufficiently small, the coupling between different neighboring trans-
mons on the lattice of Fig. 5 can simply be added up. Considering different coupling constants around
plaquettes (�) and across lattice sites (+), and taking

µ� = µ, Ω� = Ω ′,

µ+ = 0, Ω+ = Ω,
(29)

we obtain themodel (13), fromwhichwe then derive the effective Hamiltonian (15), with parameters
J and V as defined in Eq. (16).

3.3. Parameters and tunability

For the simulation of the model (11) we require that the effective parameters J and V are much
larger than the relevant decoherence rates of the qubits, and that the ratio J/V is tuneable to explore
different regimes. Assuming that the capacitances are fixed, the relative strength of themodel param-
eters can be adjusted by tuning the Josephson energies E(Q )J . This can be done by replacing a single
junction by an equivalent two-junction loop, with an effective Josephson energy given by

E(Q )J → E(Q )J cos

π
φext

Φ0


, (30)

where φext denotes an external magnetic flux through the loop, and Φ0 ≡ 2πφ0 is the magnetic flux
quantum.We then set CQ = C+, E

(Q )
J = E+

J , and CQ = C�, E
(Q )
J = E�

J cos (πφext/Φ0), for the couplings
across the lattice sites and within each plaquette, respectively (thus making the latter tuneable), and
choose the circuit parameters such that

µ+ =
ε

2


E+

J

EJ
−

C+

C


−Ω = 0, (31)

and

µ� =
ε

2

E�
J

EJ
−

C�

C


−Ω ′

= 0. (32)

The coupling constants µ� and Ω�, and therefore the ratio J/V , can now be tuned by considering a
two-junction loop, coupling neighboring links around the plaquette. These loops can be biased using
either a global magnetic field or local flux lines to generate a finite φext for the �-links, replacing the
value of E�

J and Ω ′ in Eq. (32) by E�
J cos


π
φext
Φ0


and Ω ′ cos


π
φext
Φ0


, respectively. This generates a

finite µ� ≠ 0, which increases J and simultaneously lowers V . At a certain value of the external flux,
we reach V = 0, and we recover the pure ring-exchange interaction. When φext = 0, we have J = 0
and V =

2U
EJ
(E+

J − E�
J ).
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Fig. 7. (Color online) Different parameter values as a function of the external flux φext . Here ε = 6 GHz, U = 300 MHz,
C+/C = C�/C = 0.16, E+

J /EJ = E�
J /EJ = 0.2 (dotted solid lines), and C+/C = 0.20, C�/C = 0.16, E+

J /EJ = 0.25, E�
J /EJ = 0.20

(dashed lines). (a) The ratioµ�/Ω determines the region of external flux inwhich perturbation theory is still valid. (b) Behavior
of J/Ω and V/Ω , [Ω = 120 MHz (dotted solid lines) andΩ = 150 MHz (dashed lines)]. Tuning the external magnetic flux, the
regimes (i) J = 0, V ≠ 0, (ii) J = V ≠ 0, and (iii) J ≠ 0, V = 0, can be reached. (c) Tunability of the ratio J/V . For the situation
plotted with dashed lines, at φext/Φ0 ≈ 0.13 we find V ≈ 0, and J ≠ 0, giving rise to a ring-exchange interaction only. In the
vicinity of that point, the ratio J/V can go from positive to negative values.

In Fig. 7 we show the behavior of the different system parameters as a function of the external flux.
A fine-tuning of the CQ ’s ensures that for φext the conditions (31) and (32) are fulfilled. Typical values
of the coupling constants in the region of magnetic flux where the perturbative approach leading to
Eq. (15) is still valid (µ�/Ω . 0.5) are Ω ∼ 50 MHz, µ, J, V ∼ 5 MHz, still much larger than the
standard decoherence rates of a few tens of kHz. As wewill show below, the tunability shown in Fig. 7
allows us to access the different phases of the model (15).

3.4. Rokhsar–Kivelson model

Different gauge invariant interactions can be engineered by slightly modifying the complexity of
the circuit lattice shown in Fig. 5. A particularly interesting example is the Rokhsar–Kivelson (RK)
model [51]—a paradigm of dimer physics, which describes resonant valence bond dynamics, relevant
in the context of high-temperature superconductivity [46]. This model can be simulated with the
circuit shown in Fig. 8, where we draw a basic plaquette of the two-dimensional lattice. Although
this circuit is similar to the architecture of Fig. 5, here the squids coupling neighboring transmons are
biased with a quantum flux from an LC resonator located at the center of the plaquette. Following a
similar derivation to Section 3, the model describing this circuit can be written as

H = ωbĎb + ε

⟨ij⟩

Szij −Ω

m

G2
m + V ′


SzijS

z
jk − µ


(S+

ij S
−

jk + H.c.)

+ (bĎ + b)

β ′


ςijSzijS
z
jk − η


ςij(S+

ij S
−

jk + H.c.)

. (33)

Here ςij = 1 for spins on horizontal links of the lattice, while ςij = −1 for vertical links. The sum


⟨ij⟩
involves nearest-neighbor lattice sites, and the sum


involves nearest-neighbor links around a

plaquette. For equal transmons, and in the limit CQ ≪ Cℓ, E
(Q )
J ≪ E(ℓ)J , the coupling constants are

given by

V ′
= Ω −Ω ′, Ω ′

= U
2E�

J

EJ
cos


π
φext

Φ0


, µ =

ε

2

E�
J

EJ
cos


π
φext

Φ0


−

CQ

C


−Ω ′,

β ′
= U

2E�
J

EJ
sin

π
φext

Φ0


, η =

ε

2

E�
J

EJ
sin

π
φext

Φ0


− β ′.

(34)

In the derivation of the Hamiltonian (33) we have assumed that, on top of the quantum flux
from the resonator, consecutive squids are biased with external classical fields of alternating signs.
Furthermore, we notice that, under realistic experimental conditions, the constants β ′ and η will be
reduced by a factor α 6 1 determined by the fraction of the LC-resonator flux biasing the squid.
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Fig. 8. Circuit lattice to engineer the Rokhsar–Kivelsonmodel and different four-body spin interactions. Every plaquette of the
two-dimensional lattice contains one qubit (e.g. a transmon) on each link. These aremutually coupled via a capacitor in parallel
with a two-Josephson-junction loop. When this loop is biased with a quantum flux from a central LC circuit, interactions of the
type ∼ Sz1S

z
2S

z
3S

z
4 are enabled perturbatively (see main text for details).

Given the Hamiltonian (33), and the hierarchy of scales V ′, µ, β ′, η ≪ Ω ≪ ε, ω, we can treat the
terms ∼ V ′, µ, β ′, η perturbatively, and obtain the second-order effective dynamics

Heff = ωbĎb + ε

⟨ij⟩

Szij −Ω

m

G2
m − J


�

B� + V


�

B2
� −

V
2


∥

SzijS
z
kℓ. (35)

Here


∥
restricts the sum to opposite links on each plaquette, B� ≡ S+

ij S
−

kj S
+

kℓS
−

iℓ + H.c., and the

coupling constants are given by J = −
4µ2

Ω
−

4η2

Ω−ω
, V = −

2β2

ω
. Furthermore, we have taken parameters

such that V ′
= −J−V/2, and assumed that the central resonator is initially cooled to the ground state,

thus having transitions between the resonator Fock states |0⟩ and |1⟩ only. The last termof Eq. (35) can
be eliminated by adding a Josephson junction in parallel with a capacitor connecting opposite links on
each plaquette, and choosing the corresponding capacitance and Josephson energies appropriately. In
this case, using B� = U�+UĎ

� and identifying λ = V/J , the Hamiltonian (35) reproduces the dynamics
given by (6). Alternatively, choosing V ′

= −J , we obtain the effective Hamiltonian

Heff = ωbĎb + ε

⟨ij⟩

Szij −Ω

m

G2
m − J


�

(S+

ij S
−

kj S
+

kℓS
−

iℓ + H.c.)+ 2V


�

SzijS
z
kjS

z
kℓS

z
iℓ, (36)

which displays explicitly the competition between ring-exchange and a four-body Ising interaction.

4. Probing ring-exchange interactions

A minimal setup for studying ring-exchange interactions is a circuit with four superconducting
qubits forming a single plaquette [see Fig. 9]. The approach described in the previous section can then
be used to engineer an effective ring-exchange interaction within the two-excitation subspace of the
four spins on the plaquette. In this minimal instance, the only non-vanishing coupling is between the
states |↑↓↑↓⟩ and |↓↑↓↑⟩, i.e.,

⟨↓↑↓↑ |H| ↑↓↑↓⟩ = −J. (37)
Note that for a single plaquette the Ising-type coupling ∼V commutes with the ring-exchange
interaction, and a competition between both terms in the Hamiltonian (11) appears only in systems
consisting of two or more plaquettes.

4.1. Spectroscopy

Whilewe aremost interested in the dynamics induced by theHamiltonian (11) in the gauge invari-
ant subspace, we first describe an approach for probing signatures of the ring-exchange interaction
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Fig. 9. (Color online) (a) Setup for a minimal experiment to verify ring-exchange dynamics. This system consists of a single
plaquette on the lattice of Fig. 5, where four superconducting qubits (whose spin degree of freedom is represented by the
arrows) are mutually coupled via a Josephson junction in parallel with a capacitor. (b) Energy levels of the microscopic
Hamiltonian (13) [see Appendix A]. Five different sets of states (distinguished by the total number of excitations on the
plaquette) are separated by the energy scale ε (qubit frequency). Within the two-excitation subspace, a large energy
scale Ω separates states corresponding to different Gauss law sectors. Finally, the lower energy scales µ and J provide
an energy splitting (in the one- and two-excitation subspaces, respectively). The numbers on the right indicate the level
degeneracy.

(10) by performing spectroscopic measurements on the full circuit. To do so we assume that the four
qubits can be individually coupled to a cavity resonator, which can be used to apply weak driving
fields, as well as to detect microwave photons emitted from the qubits into the resonator. The result-
ing dynamics can be modeled by the master equation

ρ̇ = −i[H + Hdrive(t), ρ] +
Γ

2


ℓ

(2S−

ℓ ρS
+

ℓ − {S+

ℓ S
−

ℓ , ρ}), (38)

where the sum runs over all the spins (on the lattice links), H is the Hamiltonian of Eq. (13), and
Hdrive(t) =

4
ℓ=1Ω

d
ℓ (S

+

ℓ e
−iωdt + S−

ℓ e
iωdt) accounts for driving fields with frequency ωd and site-

dependent driving strengthΩd
ℓ . In Eq. (38), Γ is the qubit decay rate (assumed to be homogeneous),

which limits the qubit performance and the accuracy of realizing gauge invariance. Under station-
ary driving conditions, the total number of photons emitted from a single qubit is proportional to the
steady-state excited state population ⟨σee(ℓ)⟩, where σee(ℓ) ≡

1
2 +Szℓ . By looking at correlated photon

detection events, one also has access to functions of the form ⟨σee(ℓ)σee(ℓ
′)⟩.

Fig. 10(a) shows the typical spectra in the case where qubit 2 is driven in a single plaquette
[c.f. Fig. 9(a)]. Measuring the excitation probability of the neighboring qubit 1, ⟨σee(1)⟩, one observes
four distinct peaks, which can be identified with transitions between different energy eigenstates
depicted in Fig. 9(b). The twopeaks atωd = ε+Ω±2µ correspond to transitions from the ground state
|↓↓↓↓⟩ to eigenstates in the one-excitation manifold. Within this subspace, a single spin excitation
can hop from site to site, thus forming delocalized eigenstates. The peak in the middle exhibits an
additional splitting, which cannot be explained by the single excitation dynamics. It arises from a
two-photon transition to the state |↓↑↓↑⟩, which is then coupled to the state |↑↓↑↓⟩ via the effective
ring-exchange coupling, and leads to the characteristic splitting ∼2J of the transition.

Additional evidence for a correlated two-spin hopping interaction can be obtained from correlation
measurements of the form ⟨σee(ℓ)σee(ℓ

′)⟩, which directly probe the two-excitation subspace. For
example, as shown in Fig. 10(a), the value of ⟨σee(1)σee(3)⟩ is no longer sensitive to the single
excitation resonances, but still exhibits the ring-exchange splitting atωd ≈ ε+Ω andωd ≈ ε+Ω+ J .
In contrast, the correlations between neighboring spins, e.g. ⟨σee(1)σee(4)⟩, vanish almost completely,
since states of the type |↑↓↓↑⟩ are not coupled via the ring-exchange Hamiltonian. Therefore, in
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Fig. 10. (Color online) (a) Excitation spectroscopy of a single plaquette [four coupled transmons—see Fig. 9(a)], as given by
the microscopic Hamiltonian (13). Here the qubit 2 is driven and the average population and correlations are computed in
the steady state, considering qubit relaxation as captured by Eq. (38). The population of qubit 1 (solid line) yields a four-peak
structure reminiscent of the one- and two-excitation subspaces shown in Fig. 9(b). The peak at ωd = ε +Ω + J is a signature
of the ring-exchange dynamics, as can be seen in cross-correlation measurements between different links (dashed lines). Here
the parameter values are Γ /(2π) = 30 kHz, Ω/(2π) = 100 MHz, µ/(2π) = 7 MHz, Ωd

2/(2π) = 100 kHz, Ωd
ℓ≠2 = 0.

(b) Time-evolution of the gauge invariant states on a single plaquette given by the ring-exchange interaction (10). Initially, the
state |↓↑↓↑⟩ (one excitation on the links 2 and 4) is prepared (lines starting at |⟨ψ(0)|ψ(t)⟩|2 = 1 for t = 0). It coherently
oscillateswith the state |↑↓↑↓⟩ (one excitation on the links 1 and 3). Themicroscopicmodel of Eq. (13) (solid lines) is compared
with the effective Hamiltonian (15) (dotted lines). Including the effect of cavity decay, Γ /(2π) = 30 kHz for all resonators,
the population decays to ∼90% after one oscillation. The values of the parameters are as above. Notice that these parameter
values are not optimized – in order to illustrate the feasibility under suboptimal conditions – [c.f. Figs. 7 and 12(a) for optimal
parameter values]. Also note that the value of ε is irrelevant for the effective dynamics.

combination, such measurements can be used to confirm that the relevant dynamics within the two-
excitation subspace are indeed accurately described by the Hamiltonian (13), and thus – effectively –
by (15).

4.2. Dynamics

In the remainder of the paper we are primarily interested in the dynamics induced by the effective
Hamiltonian (15), within the gauge invariant sector defined by Gm|ψ⟩ = 0. For a single plaquette,
this means that starting from the actual ground state of the circuit, |↓↓↓↓⟩, at time t = 0 we apply
a fast microwave pulse to a selected set of qubits, which excite the system into one of the gauge
invariant states, e.g. |↑↓↑↓⟩. The subsequent dynamics is then given by the effective Hamiltonian,
up to the point where one of the qubits decays. In Fig. 10(b) we show the evolution given by both
the microscopic Hamiltonian (13) and the effective model (15) – on a single plaquette – including the
effect of qubit decay. Preparing initially the state |↓↑↓↑⟩ (one excitation on the links 2 and 4), this
coherently oscillates with |↑↓↑↓⟩ (one excitation on the links 1 and 3). Even for small qubit–qubit
couplings, µ/(2π) ∼ 7 MHz, considered here, the microscopic model and the effective model
agree qualitatively well, and start to be appreciably shifted only after a few oscillations. Assuming
a qubit decay Γ /(2π) = 30 kHz [9,10], the prepared-state population is ∼0.9 after one oscillation,
which shows the possibility of simulating the dynamics of the ring-exchange interaction with current
superconducting circuits.

5. Probing string dynamics

Next we discuss more complex dynamics given by the gauge invariant model (11). To this end we
now consider the case V ≠ 0, and study phenomena associated with the competing phases as the
ratio J/V is varied. First, we will show how the quantum phase transition of the model (11), present
in the infinite-size limit, manifests itself as a crossover displayed by themagnetization of a single spin
in a system of two plaquettes. Second, we study the physics of the electric flux strings connecting a
charge and an anticharge in the lattice.
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Fig. 11. (Color online) Upper panel: Flux configurations that obey the Gauss law on a lattice of two plaquettes, and
corresponding spin configurations (below). Lower panel: Flux distribution in the ground state for J/V = 0 (left) and J/V =

−100 (right). For J/V = 0 we recover the state |a⟩, while for |J/V | ≫ 1 the ground state is a superposition of the three gauge
invariant states, with the electric flux propagating completely along the edges of the lattice.

In the upper panel of Fig. 11we show the possible configurations compatiblewith theGauss law for
a lattice of two plaquettes. Notice, that for a spin 1

2 representation of the gauge fields, the Gauss law is
irremediably broken at the vertices connected to three links. Therefore, in Fig. 11 a charge–anticharge
pair with Qm = ±

1
2 has been created at the vertices 3 and 4. Furthermore, each of the states |a⟩, |b⟩,

|c⟩, is degenerate with the state corresponding to simultaneously inverting all the spins, a degeneracy
that can be broken by applying a small magnetic field. These states can be initially prepared by locally
applying simultaneous π pulses on the appropriate qubits. Starting e.g. in |a⟩, which corresponds to
the ground state of the Hamiltonian (11) for J = 0, V > 0, we can adiabatically switch on the ring-
exchange interaction to reach the ground state of the system for a particular ratio J/V . In the lower
panel of Fig. 11 we show a simulation of the ground-state flux distribution for J/V = 0, V > 0 (left)
and for J/V = −100, V > 0 (right). In the former case, the ground state is, as mentioned above,
the antiferromagnetic state |a⟩. However, when the ratio |J/V | is increased, the ring-exchange term
dominates the dynamics and the electric flux propagates from charge to anticharge along the edges
of the lattice. In this case, the ground state is no longer a product state, but a quantum superposition
of the states |a⟩, |b⟩, and |c⟩.

5.1. Finite-size crossover

In Fig. 12(a) we show how the infinite-size quantum phase transition of the model (11) manifests
itself on a lattice of two plaquettes, captured by the averagemagnetization ⟨M⟩ ≡ ⟨Sz

Q Q̄
⟩ of the central

spin between both plaquettes. Herewe startwith the product state |ψ0⟩ = |a⟩ [c.f. Fig. 11 and the inset
of Fig. 12(a)],which can be experimentally prepared by first cooling the system to the ground state [56]
and then applying a simultaneous π pulse on the appropriate links. We notice that this state is the
ground state of theHamiltonian (11) for J = 0,V > 0, and that the large energy scale∼ Ω ensures that
the Gauss law is satisfied. In Fig. 12(a) we calculate ⟨M⟩ when the parameters are varied with time as
J = J0 sin2(vt),V = V0 cos2(vt), which, given a constant speed v, and amplitudes J0,V0, approximately
follows the functional form shown in Fig. 7(c). Neglecting qubit decay, ⟨M⟩ increases from −0.5 to 0.
At finite relaxation rates, ⟨M⟩ reaches a maximum at a finite value of J/V and then decreases due to
qubit decay. For standard relaxation rates [Γ /(2π) ∼ 20 kHz] [9,10], and superconducting-circuit
parameters, the behavior of ⟨M⟩ in the presence of qubit decay approximates well the one shown by
the Hamiltonian dynamics, thereby allowing us to characterize the transition.

Disorder
An important concern in the implementation of the model (11) is to what degree the crossover is

masked by disorder (inhomogeneities among qubit frequencies). This effect is illustrated in Fig. 12(b),



650 D. Marcos et al. / Annals of Physics 351 (2014) 634–654

Fig. 12. (Color online) (a) The infinite-size quantum phase transition of the model (11) manifests itself as a crossover in a
minimal lattice of two plaquettes. Herewe have prepared the initial product state shown in the inset, and swept the parameters
as J = 30MHz× sin2(vt), V = 30MHz× cos2(vt), with a constant speed v/(2π) = 2π × 2MHz/µs. When the effect of qubit
decay is considered, the spin on the common link [corresponding to the ‘‘order parameter’’ ⟨M⟩ in this minimal case] decays at
a rateΓ , thereby reducing the value of ⟨M⟩ for large |J/V |. (b) Effect of disorder in aminimal lattice of two plaquettes.When the
qubit frequencies take random values between ±∆ε/2, the transition becomes less visible. Here we have taken∆ε = 15MHz,
and plotted the average ⟨M⟩ (solid line) and standard deviation (dashed lines) over 10000 realizations. The figure shows that,
with uncertainties in the qubit frequencies of this magnitude, the crossover can still be observed. Here we have prepared the
initial product state shown in the inset of Fig. 12(a), and swept the parameters as J = 30MHz×sin2(vt),V = 30MHz×cos2(vt),
with a constant speed v/(2π) = 2π × 2 MHz/µs.

where we show the average of the magnetization, ⟨M⟩, over 10000 realizations (sufficient for
convergence), with qubit frequencies taking random values between ±∆ε/2. We notice that post-
selecting qubits with similar frequencies after fabrication, or incorporating tuneable qubits, may
allow uncertainties in qubit frequencies .15 MHz (considered in Fig. 12(b)). For larger values of
∆ε, the smoothening of the crossover shown in Fig. 12(b) becomes more pronounced, but up to
∆ε/(2π) ≈ 50 MHz, the crossover can still be well identified even in this small system. Although
scaling to larger lattices leads to a higher probability of error (a common problem in quantum
simulators) due to photon loss, a global order parameter such as the totalmagnetization is robustwith
respect to individual decay processes. Furthermore, a post-selection of measurements [57], together
with optimized pulses can be employed to increase the fidelity of the transition.

5.2. String dynamics

As we havementioned above, experimentally observing the dynamics of strings would give access
to open questions about confinement in lattice gauge theories. In particular, performing time-resolved
measurements would show the fluctuations of an initially-prepared string, and the formation of
strands, a problem that, even for relatively small lattices, is challenging to simulate classically. In
Fig. 13 we show two particular examples of the ground-state distribution of flux, for a lattice of five

Fig. 13. Ground-state flux distribution in a lattice of five plaquettes. For J/V = −1 (a) the electric flux propagates from charge
to anticharge through the center of the lattice, while for J/V = 0.1 (b) it propagates along the edges.
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Fig. 14. (Color online) Effect of dissipation in a minimal lattice of two plaquettes [c.f. Fig. 11]. Here we have initially prepared
the state |a⟩ of Fig. 11, and swept the parameters according to J = 30MHz× sin2(vt), V = 30MHz× cos2(vt), with a constant
speed v/(2π) = 2π × 2 MHz/µs. On the vertical axis we show∆P ≡ PΓ=0 − PΓ ≠0 [see. Eq. (39)] for different values of the
qubit relaxation rate Γ . Although the probability of error to obtain the desired ground state for J ≠ 0 increases with time due
to excitation decay, it remains of the order of 2% for realistic relaxation rates.

plaquettes. Here we have created a charge–anticharge pair at the edges (achieved by a violation of
the Gauss law by initially exciting/de-exciting the corresponding qubits). For J/V = −1 [Fig. 13(a)]
the electric flux propagates from charge to anticharge mainly through the center of the lattice, while
for J/V = 0.1 [Fig. 13(b)] it propagates along the edges of the system. This effect corresponds to a
flux fractionalization into different strands, as it was observed in [47,49]. Experimentally, it would be
interesting to investigate the time-dependence of this process, as well as the behavior as the ratio J/V
is varied.

Effect of dissipation on string dynamics
In order to measure the ground-state flux distribution shown in Fig. 13, an experimental protocol

may consist on initially preparing a product state, ground state of the Hamiltonian (11) for J = 0,
which corresponds to an antiferromagnet (ferromagnet) for V > 0, (V < 0). In the minimal lattice of
Fig. 11, this initial gauge invariant configuration is precisely the state |a⟩, where a string propagates
from charge to anticharge along the edges of the lattice. In the lattice of Fig. 13, an equivalent string
configuration – compatible with the Gauss law – can be initially prepared as a product state. By
appropriately choosing the signs of the two-body Ising interactions in the lattice, this can be chosen
equivalent to the ground state of the Hamiltonian (11). The highly-entangled ground state for J ≠ 0
can then be reached by adiabatic evolution, with e.g. a sweep of the form shown in Section 5.1. During
this protocol, it would be interesting tomonitor the string dynamics as the ratio J/V is varied. Notably,
a common problem in quantum simulation is that the probability of reaching the appropriate ground
state depends both on the system size and the qubit decoherence rates. This effect can be quantified by

P ≡ |⟨ψGS(t)|ρ(t)|ψGS(t)⟩|, (39)

where ρ(t) and |ψGS(t)⟩ are the system density operator and the ground-state wavefunction at time
t , respectively. We can then define∆P ≡ PΓ=0 − PΓ ≠0, which gives us the probability of error due
to qubit decay. Fig. 14 shows ∆P for the system of Fig. 11, starting in the state |a⟩, and during the
adiabatic passage J = J0 sin2(vt), V = V0 cos2(vt), for a constant speed v, and amplitudes J0, V0. As
the relaxation rate Γ is increased, so does the probability of error during the transition. However, for
state-of-the-art values, Γ /(2π) ∼ 20 kHz, the probability of error to obtain the desired ground state
at finite J remains of the order of 2%.

6. Conclusions and outlook

In this work we have proposed an analog quantum simulator – based on small-scale supercon-
ducting circuit lattices – to engineer gauge invariant interactions. Specifically, we have shown how to
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construct ring-exchange couplings and four-body spin interactions in two spatial dimensions. Mod-
els involving such interactions are particularly relevant in the context of U(1) quantum link models,
quantum dimer physics, and spin ice. The characteristics of electric flux strings can be studied as well.
This gives access to confinement properties, and to real-time dynamics in gauge invariant models.
More generally, simulating gauge invariant interactions constitutes a toolbox to study open problems
in quantum field theories. As we have shown, for state-of-the-art superconducting circuits, and under
realistic dissipative conditions, competing phases and the dynamics of confining strings can be inves-
tigated in small circuit lattices. The experimental realization of the gauge invariant models presented
here, may thus address open questions in condensed matter and high-energy physics, and represents
a first step towards the investigation of more complex interactions, such as the quantum simulation
of non-Abelian gauge theories.
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Appendix. Eigenstates for one plaquette

The energies and eigenstates of the microscopic Hamiltonian (13) for one plaquette are

E0 = −2ε −Ω, |ψ0⟩ = |↓↓↓↓⟩.

E1 = −ε − 2µ, |ψ1⟩ = (|↓↓↓↑⟩ − |↓↓↑↓⟩ + |↓↑↓↓⟩ − |↑↓↓↓⟩)/2.

E2 = −ε, |ψ2⟩ ≈ (|↑↓↓↓⟩ − |↓↓↑↓⟩)/
√
2.

E3 = −ε, |ψ3⟩ = (|↓↑↓↓⟩ − |↓↓↓↑⟩)/
√
2.

E4 = −ε + 2µ, |ψ4⟩ = (|↓↓↓↑⟩ + |↓↓↑↓⟩ + |↓↑↓↓⟩ + |↑↓↓↓⟩)/2.

E5 =
1
2
(Ω −


Ω2 + 32µ2) ≈ −2J,

|ψ5⟩ ≈ −
1

2

1 + 8(µ/Ω)2

(|↑↑↓↓⟩ + |↑↓↓↑⟩ + |↓↓↑↑⟩)

+
(µ/Ω)2

2

1 + 8(µ/Ω)2

(|↑↓↑↓⟩ + |↓↑↓↑⟩).

E6 = 0, |ψ6⟩ ≈ (|↑↑↓↓⟩ − |↑↓↓↑⟩)/
√
2.

E7 = 0, |ψ7⟩ ≈ (|↑↑↓↓⟩ − |↓↑↑↓⟩)/
√
2.

E8 = 0, |ψ8⟩ ≈ (|↑↑↓↓⟩ − |↓↓↑↑⟩)/
√
2.

E9 = Ω, |ψ9⟩ ≈ (|↑↓↑↓⟩ − |↓↑↓↑⟩)/
√
2.

E10 =
1
2
(Ω +


Ω2 + 32µ2) ≈ Ω + 2J,

|ψ10⟩ ≈


1/

√
2 − 2

√
2(µ/Ω)2


(|↑↓↑↓⟩ + |↓↑↓↑⟩)

+
√
2(µ/Ω)(|↑↑↓↓⟩ + |↑↓↓↑⟩ + |↓↑↑↓⟩ + |↓↓↑↑⟩).

E11 = ε − 2µ, |ψ11⟩ = (|↑↑↑↓⟩ − |↑↑↓↑⟩ + |↑↓↑↑⟩ − |↓↑↑↑⟩)/2.
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E12 = ε, |ψ12⟩ ≈ (|↑↓↑↑⟩ − |↑↑↑↓⟩)/
√
2.

E13 = ε, |ψ13⟩ = (|↓↑↑↑⟩ − |↑↑↓↑⟩)/
√
2.

E14 = ε + 2µ, |ψ14⟩ = −(|↑↑↑↓⟩ + |↑↑↓↑⟩ + |↑↓↑↑⟩ + |↓↑↑↑⟩)/
√
2.

E15 = 2ε −Ω, |ψ15⟩ = |↑↑↑↑⟩.
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