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The (2 + 1)-d U(1) quantum link model is a gauge theory, amenable to quantum simulation, with
a spontaneously broken SO(2) symmetry emerging at a quantum phase transition. Its low-energy
physics is described by a (2+1)-d RP (1) effective field theory, perturbed by a dangerously irrelevant
SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson
as a dual photon. At the quantum phase transition, the model mimics some features of deconfined
quantum criticality, but remains linearly confining. Deconfinement only sets in at high temperature.

Quantum link models (QLMs) are lattice gauge the-
ories formulated in terms of discrete quantum degrees
of freedom. U(1) and SU(2) QLMs were first con-
structed by Horn in 1981 [1], and further investigated in
[2]. In [3] QLMs were introduced as an alternative non-
perturbative regularization of Abelian and non-Abelian
gauge theories, in which ordinary gauge fields emerge
dynamically from the dimensional reduction of discrete
quantum link variables. Dimensional reduction of dis-
crete variables is a generic phenomenon in asymptotically
free theories, which gives rise to the D-theory formula-
tion of quantum field theory [4]. In the D-theory for-
mulation of 4-d Quantum Chromodynamics (QCD), the
confining gluon field emerges by dimensional reduction
from a deconfined Coulomb phase of a (4 + 1)-d SU(3)
QLM [5]. Chiral quarks arise naturally as domain wall
fermions located at the two 4-d sides of a (4 + 1)-d slab.
The (2 + 1)-d U(1) QLM has also been investigated in
the context of quantum spin liquids [6]. With staggered
background charges ±1, it is equivalent to a quantum
dimer model [7–9]. Furthermore, Kitaev’s toric code [10]
is a Z(2) QLM. In contrast to Wilson’s lattice gauge the-
ory [11], QLMs have a finite-dimensional Hilbert space
per link, which makes them ideally suited for the con-
struction of atomic quantum simulators for dynamical
Abelian [12–16] and non-Abelian gauge theories [17–20].
A long-term goal of this research is to quantum simulate
QCD in the D-theory formulation with ultracold matter,
in order to address the real-time evolution of strongly in-
teracting systems in nuclear and particle physics, as well
as their dynamics at non-zero baryon density.

In this paper, we investigate the (2+1)-d U(1) QLM, in
order to demonstrate that, despite its structural simplic-
ity, it displays highly non-trivial dynamics, and thus is
ideally suited to demonstrate the power of gauge theory
quantum simulators. We consider the model with a pla-
quette coupling J and a Rokhsar-Kivelson (RK) coupling
λ. The phase diagram is sketched in Fig.1. At zero tem-
perature, the model is confining for λ < 1. At finite tem-
perature T , it has a deconfinement phase transition above
which there is a massless mode transforming non-trivially
under the U(1) center symmetry. Due to the Mermin-
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FIG. 1. [Color online] Schematic sketch of the λ-T phase
diagram. The insets indicate the location of the peaks in the
probability distribution of the order parameter p(MA,MB).

Wagner theorem, this is not associated with spontaneous
symmetry breaking. The deconfinement phase transition
reaches zero temperature at the RK point, λ = 1. At λc
there is a quantum phase transition which separates two
phases with spontaneously broken translation symmetry
[21]. The phase at λ < λc has, in addition, a sponta-
neously broken charge conjugation symmetry. The two
phases are similar to the columnar and plaquette ordered
valence bond solid phases in a quantum dimer model [8],
which may be separated by a first order phase transition
[22] or by an intermediate phase [9].

As we will see, at λc a spontaneously broken approxi-
mate global SO(2) symmetry emerges dynamically, giv-
ing rise to a light pseudo-Goldstone boson. The interface
that separates the two broken phases on either side of the
transition manifests itself as a string with fractional elec-
tric flux 1

2 . This raises the question whether the phase
transition might be a deconfined quantum critical point
in the sense of [23, 24], corresponding to a conformal field
theory with an emergent massless photon and deconfined
electric charges. Deconfined quantum criticality has first
been investigated numerically in the J-Q quantum spin
model [25–27], between an antiferromagnetic and a va-
lence bond solid phase, and is still discussed controver-
sially [28, 29]. It has also been studied in the J-Q [30]
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and in the J1-J2 model [31–33] on the honeycomb lattice.
At a deconfined quantum critical point, the instanton-
like monopole events that cause permanent confinement
in a (2 + 1)-d compact U(1) gauge theory [34, 35] are
eliminated, because a Z(4)-invariant term that explicitly
breaks the emergent SO(2) symmetry of the effective ac-
tion becomes irrelevant. We will see that this is not what
happens in the (2 + 1)-d U(1) QLM, where the Z(4)-
invariant term can be tuned to zero. Still, the emergent
SO(2) symmetry remains weakly explicitly broken by a
“dangerously irrelevant” operator [36, 37]. This prevents
the interpretation of the Goldstone boson as an emer-
gent dual photon. It is more appropriate to think of it
as an accidentally light Abelian “glueball”. The danger-
ously irrelevant operator also contributes to the string
tension and implies that the theory remains confining at
the phase transition.

The Hamiltonian of the (2 + 1)-d U(1) QLM is

H = −J
∑
�

[
U� + U†� − λ(U� + U†�)2

]
. (1)

Here U� = UwxUxyU
†
zyU

†
wz is a plaquette opera-

tor formed by quantum links Uxy connecting nearest-
neighbor sites x and y on a 2-d square lattice. A U(1)
quantum link Uxy = S+

xy is a raising operator of electric

flux E = S3
xy, constructed from a quantum spin ~Sxy as-

sociated with the link xy. In Wilson’s lattice gauge the-
ory, where the link variables are classical parallel trans-
porters, Uxy = exp(iϕxy) ∈ U(1), taking values in the
gauge group, and Exy = −i∂ϕxy

, the single-link Hilbert
space is infinite-dimensional. In the U(1) QLM, on the
other hand, it is just given by a finite-dimensional rep-
resentation of the embedding algebra SU(2). When one
chooses spin 1

2 on each link, the link Hilbert space is
just 2-dimensional. The first term in the Hamiltonian
flips a loop of electric flux, winding around an elemen-
tary plaquette, and annihilates non-flippable plaquette
states, while the RK term, proportional to λ, counts
flippable plaquettes. The Hamiltonian commutes with
the generators, Gx =

∑
i(Ex,x+î − Ex−î,x), of infinitesi-

mal U(1) gauge transformations. Here î is a unit-vector
pointing in the i-direction. Physical states |Ψ〉 are gauge
invariant, i.e. they obey the Gauss law Gx|Ψ〉 = 0.
Besides the gauge symmetry, the QLM also has sev-
eral global symmetries, including lattice translation in-
variance and charge conjugation. Translation invariance
characterizes each energy eigenstate by its lattice mo-
mentum p = (p1, p2) ∈ ] − π, π]2. Charge conjugation
replaces Uxy by U†xy and Exy by −Exy, and charac-
terizes each eigenstate by its charge conjugation parity
C = ±. Another important global symmetry is the cen-
ter symmetry associated with “large” gauge transforma-
tions. The U(1) QLM defined on a periodic volume has
super-selection sectors characterized by wrapping electric
fluxes that take values in Z/2. On an L1×L2 lattice with
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FIG. 2. [Color online] a) Energy gaps of the lowest states on
the 6 × 6 lattice as a function of λ. b) Global fit of L1L2-

dependence of λpc, λ′pc
+

, and λ′pc
−

, that yields λc = −0.359(5).

periodic boundary conditions, the generators of the U(1)
center symmetry are Ei = 1

Li

∑
xEx,x+î. They commute

with the Hamiltonian, but cannot be expressed through
“small” periodic gauge transformations Gx.

We have performed exact diagonalization studies of the
(2 + 1)-d U(1) QLM with S = 1

2 on 4 × 4, 4 × 6, and
6 × 6 lattices. The energies of the lowest states are il-
lustrated in Fig.2a. For λ < 1, the ground state has
momentum (0, 0) and is even under charge conjugation
(i.e. C = +). For λ < λc the first excited state has
quantum numbers C = −, p = (π, π). Its energy gap
to the ground state, E− ∼ exp(−σ−L1L2), decreases ex-
ponentially with the volume L1L2, thus indicating the
spontaneous breakdown of charge conjugation C and the
translation T by one lattice spacing (in either direction).
For λ > λc, another state |C = +, p = (π, π)〉 degen-
erates with the ground state, i.e. E+ ∼ exp(−σ+L1L2),
indicating that C is now restored, while T remains spon-
taneously broken. The crossing of the two excited energy
levels, E−(λpc) = E+(λpc), defines a volume-dependent
pseudo-critical coupling λpc. The next zero-momentum
excited states, |C = ±, p = (0, 0)〉 with energies E′±,
cross twice near the critical point at two pseudo-critical
couplings λ′pc

+
and λ′pc

−
, i.e. E′−(λ′pc

±
) = E′+(λ′pc

±
). As il-

lustrated in Fig.2b, the couplings λpc, λ
′
pc
+

, and λ′pc
−

all
approach λc = −0.359(5) in the infinite volume limit.

The different symmetry breaking patterns are distin-
guished by two order parameters, MA and MB , associ-
ated with the even and odd dual sublattices A and B.
A configuration of quantum height variables hAx̃ = 0, 1,
hBx̃ = ± 1

2 , located at the dual sites x̃ = (x1 + 1
2 , x2 + 1

2 ),
is associated with a flux configuration Ex,x+î = [hXx̃ −
hX

′

x̃+î−1̂−2̂
]mod2 = ± 1

2 , X,X ′ ∈ {A,B}. The two or-

der parameters are given by MX =
∑
x̃∈X s

X
x̃ h

X
x̃ , where

sAx̃ = (−1)(x̃1−x̃2)/2 and sBx̃ = (−1)(x̃1−x̃2+1)/2. Under C
and T they transform as CMA = MA, CMB = −MB ,
TMA = −MB , TMB = MA. It should be pointed out
that ±(MA,MB) represent the same physical configura-
tion, because shifting the height variables to hXx̃ (t)′ =
[hXx̃ (t) + 1]mod2 leaves the electric flux configuration un-
changed. We have performed quantum Monte Carlo sim-



3

FIG. 3. [Color online] Probability distribution p(MA,MB) for
λ = −1, λc, and 0 at T = 0 (a,b,c), and λ = 0, T > Tc (d).

ulations with an efficient newly developed cluster algo-
rithm, that will be described elsewhere. The algorithm
has been used to determine the probability distribution
p(MA,MB) of the two order parameters MA and MB

shown in Fig.3 at λ = −1, λc, and 0 for L1 = L2 = 24a,
which reveals an emergent spontaneously broken SO(2)
symmetry at the quantum phase transition.

The low-energy effective theory describing the vicinity
of the quantum phase transition is formulated in terms
of a unit-vector field ~e(x) = (cosϕ(x), sinϕ(x)) repre-
senting the direction of (MA,MB). Since (MA,MB) and
−(MA,MB) are indistinguishable, the effective theory is
a (2 + 1)-d RP (1) model. Thus, only those states that
are invariant against a sign-change of ~e(x) belong to the
physical Hilbert space. Introducing ∂3 = ∂ct, the corre-
sponding Euclidean effective action is

S[ϕ]=

∫
d3x

1

c

[ρ
2
∂µϕ∂µϕ+δ cos2(2ϕ)+ε cos4(2ϕ)

]
. (2)

Here ρ is the spin stiffness and c is the velocity of an
emergent pseudo-Goldstone boson. δ + ε measures the
deviation from the phase transition. The δ-term explic-
itly breaks the emergent SO(2) symmetry to a Z(4) sub-
group and gives rise to a small Goldstone boson mass
Mc = 2

√
2|δ|/ρ. Even when the relevant δ-term is tuned

to zero, the dangerously irrelevant ε-term still explic-
itly breaks the SO(2) symmetry. It is natural to de-
fine the dual field Fµν(x) = 1

π εµνρ∂ρϕ(x). Since ϕ(x) is
well-defined only up to multiples of π, vortices and half-
vortices in the order parameter field manifest themselves
as charges. The electric charge contained in a spatial
region Ω is given by twice the vortex number

QΩ =

∫
Ω

d2x ∂iF0i =
1

π

∫
∂Ω

dσi εij∂jϕ ∈
Z
2
. (3)

Note that a charge 1 corresponds to a half-vortex, which
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FIG. 4. [Color online] Phase diagram as a function of δ and
ε. The insets indicate the location of the peaks in the dis-
tribution p(MA,MB). The fat and dashed lines are first and
second order phase transitions, respectively. The curved line
indicates a possible path taken in the QLM when varying λ.

is allowed because ~e(x) and −~e(x) are physically equiva-
lent. While the flux of Fµν correctly represents the con-
served charges of the U(1) center symmetry, Fµν should
not be mistaken for a dual massless photon. This in-
terpretation would require an exact SO(2) symmetry,
at least in the infrared. Due to the ε-term and other
higher order symmetry breaking terms, this would re-
quire a large amount of fine-tuning.

By applying the Ginsburg-Landau-Wilson paradigm to
the δ- and ε-terms, in mean field theory one obtains the
phase diagram of Fig.4. The two phases realized in the
QLM both have four peaks in the order parameter dis-
tribution p(MA,MB), and are separated by a weak first
order phase transition. In addition, there is an interme-
diate phase with eight peaks (whose analog may be re-
alized in the quantum dimer model [9]), separated from
the other phases by second order phase transitions [36].
If one would fine-tune to these transitions, the Goldstone
boson would become exactly massless. Even then it could
not be interpreted as a dual photon, because the SO(2)
symmetry would still remain explicitly broken.

The effective theory predicts a finite-volume rotor
spectrum (Em = m2c2/(2ρL1L2) when δ = ε = 0) with
m = 0,±2,±4, . . . States with odd values of m are ex-
cluded because they are not invariant against a sign-
change of ~e(x). The quantum numbers of the states
with m = 0,±2,±4 correspond to C = +, p = (0, 0),
C = ±, p = (π, π), C = ±, p = (0, 0), respectively. The
effective theory is in quantitative agreement with the ex-
act diagonalization study (cf. Fig.2b). A global fit of the
energy spectrum yields λc = −0.359(5), ρ = 0.45(3)J ,
c = 1.5(1)Ja, δc = −εc = 0.01(1)J/a2. A more pre-
cise determination of the low-energy constants and of λc,
based on high accuracy Monte Carlo simulations using
the cluster algorithm, will be presented elsewhere.

Away from the critical point, the δ-term gives rise to
two distinct coexisting phases that are related by C and T
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separated by the distance (x, x) along a lattice diagonal, for
λ = −1, λc, and 0, at T = 0, and at λ = λc for T = 2J .

for λ < λc, and by T for λ > λc. As illustrated schemat-
ically in Fig.5a for λ → −∞, the interface that sepa-
rates the two phases represents a string of electric flux 1

2 .

Its interface tension, σ1/2 =
√

2|δ|ρ (for ε = 0), which
plays the role of a string tension, would vanish at the
phase transition if there was no ε-term. While the ε-
term would simply be irrelevant at a critical point, here
it is dangerously irrelevant. Taking it into account, the
string tension never vanishes, and is always of order

√
ρε.

Indeed, the potential (shifted by a constant) between two
static charges ±2, illustrated in Fig.5b, shows linear con-
finement at large distances, even at the phase transition,
albeit with a small string tension σ2 = 0.201(2)J/a (com-
pared to σ2 = 1.97(1)J/a at λ = −1). This shows explic-
itly that the phase transition is not a deconfined quan-
tum critical point. The energy density −J〈U� + U†�〉 in
the presence of two charges ±2 is illustrated in Fig.6a-
d. The flux string connecting the charges separates into
four strands of flux 1

2 that repel each other. In accordance
with the effective theory, the interior of the strands con-
sists of the phase that is stable on the other side of the
transition. Near λc the flux string undergoes topology
change by wrapping one strand over the periodic bound-
ary and materializing an additional strand at the edge
of the system, whose interior then expands to become
the new bulk phase (cf. Fig. 6b). Viewed as interfaces
separating bulk phases, the strands display the universal
phenomenon of complete wetting.

Finally, we have studied the system at finite temper-
ature. The electric flux susceptibility, 〈E2

i 〉 is non-zero
at T > Tc, indicating a massless mode that transforms
non-trivially under the U(1) center symmetry, giving
rise to a logarithmic charge-anti-charge potential (c.f.
Fig.5b). Hence, the “deconfined” phase no longer has lin-
ear, but still has logarithmic confinement. As illustrated
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in Fig.6d, the flux then spreads out and no longer forms
a string. Interestingly, the shift symmetry T remains
spontaneously broken at high temperature (c.f. Fig.3d).
Actually, in the deconfined phase yet another SO(2) sym-
metry emerges, which originates from the Gauss law.

In conclusion, we have observed an emergent SO(2)
symmetry with an associated pseudo-Goldstone boson in
the (2+1)-d U(1) QLM. Interfaces separating phases with
spontaneously broken C or T symmetry manifest them-
selves as strings carrying fractional electric flux 1

2 . Al-
though the model displays certain features of deconfined
quantum critical points, a dangerously irrelevant opera-
tor leads to small explicit SO(2) breaking. This prevents
the interpretation of the emergent Goldstone boson as
a massless photon, and implies a non-zero string ten-
sion also at the phase transition. It remains to be seen
whether phenomena, similar to the ones observed in the
QLM, may masquerade as deconfined quantum critical-
ity in other models as well. Once the (2 + 1)-d U(1)
QLM is realized in ultracold matter experiments, its rich
dynamics will become accessible to quantum simulation.
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Rico, A. Sen, and P. Zoller for illuminating discussions.
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5

[1] D. Horn, Phys. Lett. 100B (1981) 149.
[2] P. Orland, D. Rohrlich, Nucl. Phys. B338 (1990) 647.
[3] S. Chandrasekharan, U.-J. Wiese, Nucl. Phys. B492

(1997) 455.
[4] R. Brower, S. Chandrasekharan, S. Riederer, U.-J. Wiese,

Nucl. Phys. B693 (2004) 149.
[5] R. Brower, S. Chandrasekharan, U.-J. Wiese, Phys. Rev.

D60 (1999) 094502.
[6] M. Hermele, M. P. A. Fisher, L. Balents, Phys. Rev. B69

(2004) 064404.
[7] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61

(1988) 2376.
[8] R. Moessner, S. L. Sondhi, E. Fradkin, Phys. Rev. B65

(2002) 024504.
[9] A. Ralko, D. Poilblanc, R. Moessner, Phys. Rev. Lett.

100 (2008) 037201.
[10] A. Kitaev, Ann. Phys. 321 (2006) 2.
[11] K. Wilson, Phys. Rev. D10 (1974) 2445.
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